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Abstract. We show that the vanishing of the higher dimensional homology

groups of a manifold ensures that every almost CR structure of codimension

k may be homotoped to a CR structure. This result is proved by adapting a
method due to Haefliger used to study foliations (and previously applied to

study the relation between almost complex and complex structures on mani-

folds) to the case of (almost) CR structures on open manifolds.

Dedicated with admiration to André Haefliger

1. Introduction

An almost complex structure on an even dimensional smooth manifold M is a
smooth linear vector bundle map J on the tangent bundle of M satisfying J2 =
−I. We pass to the complexified tangent bundle and denote by B the bundle
of eigenspaces of J with eigenvalue +i. So the elements of B correspond to the
anti-holomorphic vectors. We have

B ∩B = {0} and B ⊕B = C⊗ T (M).

These steps are reversible, and in this paper we shall view an almost complex
structure as being such a subbundle of the complexified tangent bundle.

Being given an almost complex structure B on M , one says that B defines a com-
plex structure on M if in an open neighborhood of each point complex coordinates
may be introduced so that B is spanned by the set of vectors

∂

∂zj
, j = 1, . . . ,

1

2
dimM.

The Newlander-Nirenberg Theorem [21] asserts that B defines a complex structure
if and only if B is involutive, by which we mean that the bracket of two smooth
sections of B defined on an open subset of M is also a section of B, i.e., the space
B of smooth vector fields with values in B satisfies

[B,B] ⊂ B.
More generally, any subbundle of C⊗T (M) is said to be involutive if this condition
is satisfied.

This, of course, is reminiscent of the Frobenius condition for foliations. It is to be
expected that various techniques developed in the theory of foliations would have
analogues whenever subbundles of C⊗ T (M) are involutive. In particular, we ask:
When does M admit an involutive subbundle B which satisfies B ∩ B = {0} and
has a specified complex dimension? For almost complex structures these techniques
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do extend, see [1], [16]. Using somewhat different techniques from foliation theory,
we provide an answer for almost CR structures on manifolds having vanishing
homology in high dimensions.

There are two basic steps to our argument. Following Haefliger’s work in foliation
theory, we broaden the definition of an almost CR structure to a more flexible
category (in Section 3) in order to apply (in Section 7) homotopy theory to study
the existence of liftings of a continuous map X → B to a map X → E, where
E → B is a given fibration. This is used to construct a manifold X, foliated
by complex manifolds, and a map f : C ⊗ T (M) → T 1,0(X) with appropriate
properties. We then use Gromov’s h-principle to prove an analogue of the Gromov-
Phillips Theorem in order to replace f by a map F : M → X whose differential
has these properties (specifically, Conditions 1 and 2 of Theorem 4.1) and thereby
induces on M the desired CR structure.

For convenience, here is the main result. Definitions are in the next section.

Theorem 1.1. If

Hp(M
2n+k; Z) = 0 for p ≥ n+ k + 1

then every smooth almost CR structure of codimension k on M is homotopic to a
Cω CR structure of codimension k. In particular, every C∞ CR structure may be
deformed to a Cω CR structure.

2. The basics

Let M be a manifold of dimension 2n + k with k > 0. Let N stand for some
unspecified manifold of the same dimension, which will often be just an open ball
in R2n+k. All manifolds, bundles, and maps are of class C∞, and all manifolds
are paracompact, unless otherwise indicated. (It is likely that the results discussed
here also hold with only minimal smoothness assumptions.) All open sets which are
introduced to state local results are taken to be connected and sufficiently small.

An almost CR structure of codimension k: on M is a complex subbun-
dle B ⊂ C⊗ T (M) of complex dimension n that satisfies B ∩B = {0}.

A CR structure of codimension k: is an almost CR structure B of codi-
mension k that in addition is involutive.

A generic CR immersion: is an immersion f of M into a complex manifold
X of complex dimension n + k such that (C ⊗ T (M)) ∩ f∗T 0,1(X) has
complex dimension n at all points of M . We set B = (C ⊗ T (M)) ∩
f∗T 0,1(X) and observe that such an immersion induces a CR structure on
M . Conversely, when the CR structure B is given we require that the
immersion induces this CR structure.

Remark 1. Results similar to ours should hold for a large class of involutive sys-
tems.

Two things are well known:

• Not all CR structures can be obtained by immersions into complex mani-
folds. That is, there exist smooth CR structures that are not induced by
local embeddings into Cn+k. Nirenberg [22, page 13] gave the first examples
of such non-realizable CR structures.
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• Real analytic CR structures are obtained by immersions into Cn+k and
there is even an associated uniqueness result. For the convenience of the
reader we now state and prove this result.

Lemma 2.1. If M has a Cω CR structure B of codimension k then there exists an
open covering

M =
⋃
j

Oj

and Cω generic CR embeddings

fj : Oj → Cn+k.

Further, for each pair (i, j) with Oi∩Oj 6= ∅ there exists an open set Uij containing
fi(Oi ∩ Oj) and a biholomorphism γij : Uji → Uij with

fi = γij ◦ fj on Oi ∩ Oj .

Proof. We reduce this lemma to the corresponding result for Cω almost complex
manifolds by applying the following theorem.

Theorem 2.1 ([6], [19]). Let Q1, . . . , QN be real analytic vector fields in a neigh-
borhood of the origin in R2N satisfying

(1) Q1, . . . , QN , Q1, . . . QN span C⊗R2N

(2) [Qi, Qj ] is in the linear span of {Q1, . . . , QN} for 1 ≤ i, j ≤ N .

Then there exist complex coordinates {z1, . . . , zN} on a possibly smaller neighbor-
hood of the origin such that

{Q1, . . . , QN} = {∂z1 , . . . , ∂zN }.

To use this theorem to prove the lemma, let L1, . . . , Ln be real analytic and span
the CR bundle B near some point p ∈M . Choose coordinates

x1, . . . , x2n, t1, . . . , tk

so that

∂x1, . . . , ∂x2n

span B ⊕B at p. First write

Lj =

2n∑
p=1

αjp(x, t)∂xk
+

k∑
m=1

βjm(x, t)∂tm , j = 1, . . . , n,

with coefficients α and β in Cω and then extend each vector field to R2n+2k by

Lj =

2n∑
p=1

αjp(x, t+ is)∂xk
+

k∑
m=1

βjm(x, t+ is)∂tm .

Let B̃ be the linear span of these extended vector fields together with the vector
fields

∂tm + i∂sm , m = 1, . . . , k.

Then, using the fact that the coefficients are holomorphic in t+ is, B̃ is involutive
and so the above Theorem applies:

B̃ = {∂z1 , . . . , ∂zn+k
}.
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This gives us an embedding of a neighborhood of p in M into Cn+k with

B = (C⊗ T (M)) ∩ T 0,1(Cn+k).

Thus the embedding is a generic CR embedding.
To find γij we assume that Oi∩Oj is not empty. Thus we have a diffeomorphism

Φ : fi(Oi ∩ Oj)→ fj(Oi ∩ Oj)
with Φ∗B = B. This implies that each component of Φ is a Cω CR function. That
is, for each local section L of B we have

LΦj = 0.

Such a function on a generic submanifold of a complex manifold is the restriction
of a holomorphic function. See, for instance [2, page 29, Corollary 1.7.13]. We note
for later use that the proof of this Corollary also shows that the extension is unique.

Let γij denote this extension. If γij were not a biholomorphism in some neigh-
borhood of fi(Oi ∩ Oj) then there would be a nonzero vector

v =

n+k∑
m=1

αm∂zm

annihilated by dγij at some p ∈ fi(Oi ∩Oj). Since the submanifold is CR generic,
v = T − iJT for some T ∈ TM |p. But since γij has been extended holomorphically

dγv = dγT − idγJT
= dγT − iJ(dγT ).

So if γij is not a biholomorphism, dγij annihilates a nonzero vector in TM and this
is impossible because γij is a real diffeomorphism on fi(Oi ∩ Oj). �

We note that
γik = γij ◦ γjk

on the domain fk(Oi ∩Oj ∩Ok). To see this let p ∈ fk(Oi ∩Oj ∩Ok). Then there
exists some x ∈ Oi ∩ Oj ∩ Ok with fk(x) = p. Thus

γik(p) = γik ◦ fk(x) = fi(x).

Further,

γij ◦ γjk(p) = γijγjk ◦ fk(x) = γij ◦ fj(x) = fi(x) = γik(p).

By the uniqueness of extensions of holomorphic functions off of generic submani-
folds, as referenced in the previous proof, the fact that

γik = γij ◦ γjk
holds on fk(Oi ∩ Oj ∩ Ok) implies that it holds wherever it makes sense.

3. Haefliger structures

Following a well-known procedure in foliation theory, as in [17] or [20] we gen-
eralize the objects in Lemma 2.1 by dropping the requirements that the maps are
smooth (indeed analytic) and are embeddings. As a reminder, we consider only
paracompact manifolds. Let A be some index set.

Definition 1. A Haefliger CR structure of codimension k on M2n+k consists of

• An open covering M =
⋃
j Oj, j ∈ A,
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• continuous maps fj : Oj → Cn+k,
• local biholomorphisms γij of Cn+k defined for each pair (i, j) such that
Oi ∩ Oj 6= ∅ satisfying:
(1) γik = γij ◦ γjk at all points where both sides are defined, and
(2) fi = γij ◦ fj on Oi ∩ Oj.

Lemma 2.1 shows that a Cω CR structure admits a Haefliger CR structure of a
special kind. Namely, each fj is an embedding.

Let Aij and Bij denote, respectively, the domain and codomain of γij . So γij
induces a bijection γij∗ : T 1,0(Aij)→ T 1,0(Bij). We may restrict γij∗ to the image
of Oi ∩ Oj and then pull back to M to obtain transition functions gij that patch
Oi ×Cn+k to Oj ×Cn+k over Oi ∩ Oj , and so determine a vector bundle:

Definition 2. The normal bundle ν of a Haefliger CR structure is the complex
(n+ k)-dimensional vector bundle over M with transition functions gij.

Theorem 3.1. If B is a Cω CR structure then (C ⊗ T (M))/B is isomorphic to
the normal bundle of a Haefliger CR structure.

Proof. By Lemma 2.1, M admits a Haefliger CR structure. Each fi is a generic
CR map, so we have over Oi,

B ∼= f i∗B = (C⊗ T (M)) ∩ T 0,1.

We claim this implies

(3.1) ((C⊗ T (M))/B) |Oi
∼= f∗i T

1,0.

To see this consider the map C⊗ T (M)→ T 1,0 given by, again over Oi,
Φ : Y 7→ f i∗Y − iJf i∗Y

where J is the standard anti-involution on Cn+k. Note that Φ(Y ) = 0 if and only
if

Y ∈ (C⊗ T (M)) ∩ T 0,1 = f i∗B.

Thus the kernel of Φ has complex dimension n, which implies that Φ is surjective.
Then (3.1) follows.

But the transition functions for T 1,0|fi(M) are just the derivative maps gij . Thus
(C⊗ T (M))/B is isomorphic to the normal bundle of this Haefliger CR structure.

�

The same conclusion holds if B is homotopic (even through 2n-plane bundles
which may not be almost CR) to a Cω CR structure.

We can now state the first of two basic steps in the proof of our main theorem.
Here there is no restriction on the manifold. But for the second step, Theorem 7.1,
the topology of the manifold is restricted. In particular, M needs to be open.

Theorem 3.2. Let B be a smooth almost CR structure of codimension k on M2n+k.
If (C⊗ T (M))/B is isomorphic to the normal bundle of a Haefliger CR structure
then B is homotopic through almost CR structures of codimension k to a Cω CR
structure.

The next two sections contain the proof of this theorem.

Corollary 1. Let B be a smooth CR structure. Then B is homotopic to a Cω CR
structure if and only if (C ⊗ T (M))/B is isomorphic to the normal bundle of a
Haefliger CR structure.
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It is not known if every smooth CR structure is homotopic to a Cω CR structure.
It is possible that this is true on some manifolds and false on others. (It is certainly
true locally.) We shall see in Theorem 8.1 that it is true provided M satisfies some
topological restrictions.

4. The CR embedding

In this section we reduce the proof of Theorem 3.2 to an h-principle argument
which is then provided in the next section.

Lemma 4.1. Given a Haefliger CR structure on M2n+k there exists a manifold X
of real dimension 4n+ 3k and an embedding ι : M → X such that

(1) X is a fiber bundle over M with complex structure on the fibers.
(2) X admits a foliation F2n+k transverse to the fibers.
(3) The normal bundle ν of the Haefliger structure is isomorphic to

ι∗T (X)/T (M).

Proof. Let M have local charts

φi : Oi → R2n+k.

Set Ω equal to the disjoint union

Ω =
⊔
i

(φi(Oi)×Cn+k),

and define an equivalence relation on Ω by setting

(xi, yi) ∼ (xj , yj)

whenever

xj = φjφ
−1
i (xi) and(4.1)

yj = γji(yi).(4.2)

Here γji are the local biholomorphisms of the Haefliger structure. Denote the
quotient space, with the quotient topology, by Z. Note that the projection map

Ω→ Z

is an open map and that the projection map

(4.3) π : Z →M

is well-defined. The multi-valued map of M into Ω

p 7→
⊔
i

(p, fi(p))

for p ∈ Oi passes down to a well-defined map

ι : M → Z.

Clearly, π ◦ ι is the identity.
We shall see that Z is Hausdorff near ι(M). This provides the manifold X. To

show that Z is Hausdorff near the image of M let a = [(xi, yi)] and b = [(xj , yj)] be

points of Z. If xj 6= φjφ
−1
i (xi), then we can separate a and b by disjoint open sets.

So now let a = [(xi, yi)] and b = [(φjφ
−1
i (xi), yj)]. We may assume (by staying

close enough to ι(M)) that yi is in the domain of γji. Thus if yj 6= γji(yi) we may
again separate a and b while if yj = γji(yi) then a = b.
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Note that the transition functions for X are

(4.4) ψji(x, y) = (φjφ
−1
i (x), γji(y))

for x ∈ φi(Oi∩Oj) and y close enough to γji(fi). This implies that the two natural
foliations on Ω corresponding to each factor in φi(Oi) × Cn+k pass down to X.
In particular, the complex structure on each fiber π−1(p) is well-defined. (Here
the map π of (4.3)is restricted to X ⊂ Z.) Thus (1) and (2) of the Lemma hold.
Further, the transition functions for T (X) are

ψji∗(x, y) = ((φjφ
−1
i )∗(x), γji∗(y)).

Restricting to ι(M) we have

ψji∗(x) = ((φjφ
−1
i )∗(x), γji∗(fi(x)))

= ((φJφ
−1
i )∗, gji(fi(x))).

So the transition functions for the normal bundle of ι(M) ⊂ X are the same as
those for ν, the normal bundle of the Haefliger structure. This establishes (3). �

To explain what comes next, we review a well-known procedure in foliation
theory. Let M have a foliation F of codimension q. If Φ : M → M is transverse
to the leaves of F , in the sense that Φ∗T (M) and T (F) together span T (M) at
each point of the image of M , then, as is easily seen, F induces a foliation on M ,
of the same codimension. By the Gromov-Phillips Theorem (see, for instance, [20,
Section 4, pp. 293–297] when M is open, it is enough to have a bundle map

Ψ : T (M)→ T (M)

satisfying the tranversality condition, for then the base map of Ψ may be deformed
to a transverse map Φ.

We rephrase this as: An open manifold M admits a codimension-q foliation
provided there exists a vector bundle map Ψ such that the composition

T (M)
Ψ−→ T (M) −→ T (M)/T (F)

is surjective, where F is a codimension-q foliation of M.
To state the modification of the Gromov-Phillips Theorem we use, we first need

some definitions. Let π : X →M be the projection provided by the Lemma. Recall
that each fiber π−1(p) is a complex manifold. Set

Tf =
⋃
p∈M

T (π−1(p)) ⊂ T (X)

and

T 1,0
f =

⋃
p∈M

T 1,0(π−1(p)) ⊂ C⊗ T (X).

The subscript is to remind us that we are looking at tangents to the fiber. The
form of the transition functions for X, see (4.4), shows that the map

µ : C⊗ T (X)→ T 1,0
f

is well-defined.
Although the following is patterned upon the Gromov-Phillips Theorem, the

restriction to open manifolds is not necessary here.
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Theorem 4.1. If there exists a surjective bundle map

Ψ : C⊗ T (M)→ T 1,0
f |M

then there exists a smooth map

F : M → X

such that

(1) The composition

µF∗ : C⊗ T (M)→ C⊗ T (X)→ T 1,0
f

is surjective.
(2) µ∗F∗ is injective when restricted to T (M).
(3) B1 = kerµF∗ is homotopic to B = ker Ψ.

This is the heart of the proof of Theorem 3.2. We prove it in the next section by
means of Gromov’s h-principle. Here let us first see how it implies the conclusion
of Theorem 3.2 and then how we use the hypothesis

(C⊗ T (M))/B ∼= ν

to obtain the surjective map

Ψ : C⊗ T (M)→ T 1,0
f |M .

We first show that B1 defines a CR structure.

Lemma 4.2. The bundle B1 is involutive.

Proof. It suffices to assume that a and b are local sections of B1 and to show that

µF∗[a, b] = 0.

We work in local coordinates. So we write

F (x) = (f(x), y(x)) ∈ φi(O)×Cn+k.

For any a ∈ C⊗ T (M), we have (note that we now use a(y) to mean the action of
the vector a on the function y and we employ the summation convention)

F∗(a) = a(fj)∂xj
+ a(yk)∂zk + a(yk)∂zk

and

µF∗ = a(yk)∂zk .

It follows that

B1 = kerµF∗ = {a ∈ C⊗ T (M) : a(yk) = 0 for k = 1, . . . , n+ 1}

and this is involutive. �

Lemma 4.3.

B1 ∩B1 = {0}.

Proof. This is a consequence of the second condition of the Theorem. �

Thus B1 is a CR structure homotopic to B. (The proof of Theorem 4.1 will show
that this homotopy is through almost CR structures.)

Finally, we need the map Ψ.
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Lemma 4.4. If (C ⊗ T (M))/B is isomorphic to the Haefliger normal bundle ν
then there exists a surjective bundle map

Ψ : C⊗ T (M)→ T 1,0
f |M

with B = ker Ψ.

Proof. We have

C⊗ T (M)→ (C⊗ T (M))/B
α→ ν

β→ T 1,0
f |M .

Since α and β are isomorphisms, the composite map Ψ is surjective and has kernel
B. �

5. An application of the h-principle

The general set-up is to define a subset R ⊂ J1(M,X), called a relation, with
the property that j1(F ) ∈ R implies that F satisfies the conclusions of Theorem
4.1. See [8], [11], [14] for discussions of the h-principle.

Again choosing local coordinates x ∈ R2n+k for M , y ∈ R2n+k, and z ∈ Cn+k

for ν we see that
µF∗ : C⊗ T (M)→ T 1,0

f

is surjective if the rank of the matrix(
∂zi
∂xj

)
, 1 ≤ i ≤ n+ k and 1 ≤ j ≤ 2n+ k

is maximal (i.e., equal to n+ k) and that

µF∗ : T (M)→ T 1,0
f

is injective if the rank of the (2n+ 2k)× (2n+ k) matrix
∂zi
∂xj

∂zi
∂xj


is also maximal.

So we define our relation by

R = {(p, c, aji ) : rank(a) = n+ k, rank

(
a
a

)
= 2n+ k}

where, as above
1 ≤ i ≤ n+ k, 1 ≤ j ≤ 2n+ k.

We claim that R is an open and ample subset of J1(M,X). For the definition
of ample see any of the above cited works or [15]; for the proof of the claim see
[15], pages 157–159. It is a consequence of the h-principle that the desired F exists
provided we can find a section

σ : M → R.
That is, the existence of a formal solution implies the existence of a genuine solution.

To see that we do have a formal solution, we identify a bundle map

σ : C⊗ T (M)→ T 1,0
f

with a section
σ̃ : M → J1(M,X)



10 HOWARD JACOBOWITZ AND PETER LANDWEBER

by writing

σ(∂xj
|p) = hji∂zi |σ(p)

and then setting

σ̃(p) = (p, σ(p), hji ).

As long as σ is surjective and its kernel satisfies B ∩B = {0}, so

σ : T (M)→ T 1,0
f

is injective, σ̃ is a formal solution,

σ̃ : M → R ⊂ J1(M,X).

In this context, Lemma 4.4 asserts the existence of a formal solution.
The h-principle asserts more than the existence of a genuine solution. In fact,

the genuine solution is obtained by a deformation

σt : M → R 0 ≤ t ≤ 1

such that σ0 = σ̃ and σ1 = j1(F ). Now set

Bt = ker µσt.

We have rankBt = n and Bt ∩Bt = {0} for all t, and moreover B1 is involutive.
Thus Bt represents a deformation of B through almost CR structures to a true

CR structure.
Finally, once we have F : M → X we may deform F , maintaining the open

conditions on the ranks of the matrices, to a Cω map.
The proof of Theorem 3.2 is complete.

6. Classifying spaces

We first note that the definition of a Haefliger CR structure makes sense (for
fixed n and k) if M is merely a topological space. To specify n and k we speak of
an (n, k) Haefliger CR structure. (Actually, only n + k appears in the definition,
so we occasionally speak of an (n + k) Haefliger structure.) Also if X and Y are
topological spaces and Y has an (n, k) Haefliger CR structure then any continuous
map φ : X → Y induces an (n, k) Haefliger CR structure on X.

Definition 3. Two (n, k) Haefliger CR structures on X are homotopic if there
exists an (n, k) Haefliger CR structure on X × I which pulls back to the given
structures on X × {0} and X × {1}.

In the following, we assume that all Haefliger CR structures are on paracompact
spaces, and thus the classifying spaces for these structures are also paracompact.

Definition 4. A topological space Bn,k with an (n, k) Haefliger CR structure is a
classifying space for (n, k) Haefliger CR structures if

• Every (n, k) Haefliger CR structure on a manifold N is induced by a con-
tinuous map φ : N → Bn,k.

• Two (n, k) Haefliger CR structures on N are homotopic if and only if the
corresponding continuous maps into Bn,k are homotopic.

The associated (n+ k)-dimensional normal bundle over Bn,k is denoted by νn,k.

Theorem 6.1. There exists a classifying space for (n, k) Haefliger CR structures.
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This result is a particular case of the existence of classifying spaces for topological
groupoid structures (as proved by Haefliger [12], [13] and others—see [18, page 48] or
[20, page 312] for expository accounts). Indeed, these are precisely the classifying
spaces for complex structures studied by Landweber [16] and by Adachi [1] and
usually denoted by BΓC

q . In the present case, the codimension q is taken to be

n + k. Here ΓC
q denotes the topological groupoid of germs of biholomorphisms

between open subsets of Cq.

7. The lifting problem

We have started with a complex subbundle B ⊂ C ⊗ T (M) and have set ν =
(C ⊗ T (M))/B. Using a Hermitian metric on C ⊗ T (M) we may also consider ν
as a subbundle of C ⊗ T (M) complementary to B in C ⊗ T (M). Our aim is to
show that the subbundle ν ⊂ C⊗T (M) of rank n+k is the normal bundle of some
(n+k) Haefliger structure on M . Since bundles over M are classified by homotopy
classes of maps of M into BGL(n+ k) (we denote by GL(m) the complex general
linear group GL(m,C) ) and Haefliger structures are classified by homotopy classes
of maps of M into Bn,k, the following set-up is natural. For any complex vector
bundle ξ of rank m over a paracompact space X, let cl (ξ) : X → BGL(m) denote
a classifying map for ξ. Thus we have the commutative diagram

M
cl (ν)×cl (B) //

cl (C⊗T (M)) ++

BGL(n+ k)×BGL(n)

B(ι)

��
BGL(2n+ k)

where ι denotes the inclusion of GL(n+ k)×GL(n) into GL(2n+ k) by means of
block matrices and B(ι) is the map of classifying spaces induced by this inclusion.

As above, let νn,k denote the normal bundle on the classifying space Bn,k. Note
that νn,k defines a map cl (νn,k) : Bn,k → BGL(n+ k), unique up to homotopy.

Theorem 7.1. If

(7.1) Hp(M
2n+k; Z) = 0 for p ≥ n+ k + 1

then there exists a lift

Bn,k ×BGL(n)

cl (νn,k)×B(id)

��
M

cl (ν)×cl(B)
//

44

BGL(n+ k)×BGL(n).

Proof. The homotopy fiber F = Fn,k of the map cl (νn,k) : Bn,k → BGL(n +
k) is (n + k)-connected (cf. [1] and [16], although the latter paper needs to be
supplemented by Gromov’s h-principle for totally real immersions, as given in [10]
and [11]). Since the obstructions to lifting a map

(7.2) M → BGL(n+ k)×BGL(n)

lie in Hj+1(M ; {πj(F)}) for the local coefficient system {πj(F)}, and since πj(F) =
0 for 0 ≤ j ≤ n + k, the nonzero obstructions can lie only in Hj+1(M ; {πj(F)})
for j ≥ n + k + 1. (For discussion of local coefficient systems, also known as
bundles of coefficients or systems of local groups, we refer to Steenrod’s book [25]
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on fiber bundles, or to his paper [24]. For a more recent account dealing with
fibrations, see G. Whitehead’s book [26, Chapter VI].) Since complex general linear
groups are connected, their classifying spaces are simply connected, and so the
map cl (νn,k) : Bn,k → BGL(n + k), which we view as a fibration, has simple
local coefficient systems in the sense of [24]. This means that there is a unique
isomorphism between the homotopy groups of any two fibers. It follows that the
local coefficient systems over M appearing here are also simple. As a result, the
cohomology groups here are ordinary cohomology groups and we can apply the
usual universal coefficient theorem which expresses cohomology in terms of integral
homology (note that homotopy groups beyond the first one are abelian and so the
universal coefficient theorem applies). Hence if (7.1) holds then by the universal
coefficient theorem we also have

Hj+1(M ; {πj(F)}) = 0 for j ≥ n+ k + 1

and so every map (7.2) lifts to a map

M → Bn,k ×BGL(n).

�

Remark 2. The hypothesis of Theorem 7.1 can be slightly weakened, Namely, it
suffices to require that the integral homology groups in (7.1) vanish for p ≥ n+k+2,
and be free abelian for p = n + k + 1. In particular, this weakened hypothesis
is satisfied if the manifold M2n+k has the homotopy type of a CW complex of
dimension at most n + k + 1. This last condition is satisfied if M2n+k has the
homotopy type of an open (n+ k+ 2)-manifold, which follows from [23, Lemma 1].
In short, if M2n+k is homotopic to an open (n+k+2) manifold, then the lift exists
and Theorem 1.1 holds in this slightly more general case.

8. The theorem

Theorem 8.1. If M2n+k satisfies the condition (7.1) of Theorem 7.1 then every
smooth almost CR structure of codimension k on M is homotopic to a Cω CR
structure of codimension k. In particular, every C∞ CR structure may be deformed
to a Cω CR structure.

Proof. The lifting M → Bn,k × BGL(n) of Theorem 7.1 shows that ν ⊕ B is iso-
morphic to some bundle ν0⊕B0 with ν0 the normal bundle of some (n, k) Haefliger
structure on M and B0 a complex bundle of rank n. The map cl (ν) × cl (B) is
homotopic to the map cl (C ⊗ T (M)) and so, using the fact that the diagram is
commutative we see that

ν0 ⊕B0 ∼= C⊗ T (M).

In particular, ν0 and B0 can be identified with subbundles of C⊗ T (M). Further,
since the map cl (νn,k)×B(id) is the identity on the BGL(n) factor, we have that
ν is isomorphic to ν0. Thus Theorem 3.2 may be applied to show that B may be
deformed to some CR structure. Further, since this CR structure is induced by a
map F : M → X, as in Theorem 4.1, the map F itself may be deformed to yield a
Cω CR structure. This last step just uses that the real analytic functions are dense
in the set of smooth functions, by the Whitney approximation theorem. �

Note that the requirement that the integral homology of M vanish in high di-
mensions excludes compact manifolds, provided that n > 1. In the case n = 1
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the theorem holds for a trivial reason: Each almost CR structure with n = 1 is
automatically involutive.

In view of the analogy between foliations and involutive structures it is natural
to try to place into this new context Bott’s necessary condition for a subbundle of
TM to be homotopic to a foliation. See [3], [4], or [5] for Bott’s original argument
and some of its further consequences.

A version of Theorem 8.1 also holds for k = 0, as in [1] and [16], but our proof
does not. The reason for this, in a very similar case, is explained on page 160 of
[15].

Actually, for almost complex structures the conclusion of Theorem 8.1 may be
strengthened with a slight weakening of the hypothesis. The existence of a J-convex
proper Morse function on M2n, n > 2, with no critical point of index greater than
n implies that the almost complex structure may be deformed in such a way that
the Morse function becomes a plurisubharmonic exhaustion function, and so the
new structure is Stein. See [7] and [9]. ( Analogous results in the CR case, at least
for k = 1, might be possible.) Note that the existence of a proper Morse function
with no critical points of index greater than q implies Hp(M,Z) = 0 for p > q.
So the existence of the postulated Morse function in [7] and [9] implies (7.1). The
reverse implication is in general false; the vanishing of higher homology groups does
not imply the existence of a Morse function without critical points of high index.
We are unable to determine whether in the present case, that is in the presence of
an almost complex structure (even one homotopic to an integrable structure) and
with q equal to half the dimension of M , this reverse implication does hold.
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