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1. Introduction

Under various hypotheses and contexts we have

(1.1) dim Γ(X,Lk) < Ckn,

where

• X is a complex manifold of dimension n.
• L is a holomorphic line bundle over X.
• Lk is the kth tensor product.
• Γ(X,Lk) is the space of global holomorphic sections X → Lk.
• C is a constant, which depends on X and L but not on k.

We start in Section 2 with an explicit example and an easy calculation. One of
the first explicit instances of this inequality occurs in the work of C. L.Siegel. In
Section 3 we sketch his proof and application. In Section 4 we sketch important
generalizations.

2. Background Material and An Example

We begin by recalling the relation between divisors and holomorphic line bundles.
See [6] for details. A divisor in a complex manifold X is a locally-finite, formal sum

D =
∑
i

aiVi

where ai ∈ Z and each Vi is an irreducible sub-variety of codimension one. We fix
a sufficiently fine open covering

X = ∪Uα
such that Vi ∩ Uα has a single defining function giα ∈ O(Uα). Set

fα = Πig
ai
iα

and when Uα ∩ Uβ 6= ∅ take

gαβ = fα/fβ

as the transition functions from Uβ ×C to Uα×C of a holomorphic line bundle on
X. Denote this bundle by D. In particular, if we start with a global meromorphic
function f , pass to the divisor that represents the zeros and poles of f , and then
to the line bundle associated to the divisor, we end up with a trivial line bundle.
Further, if a line bundle [D] is trivial, then D is the divisor of a meromorphic
function. At the end of this section, we will introduce another, and notrivial,
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line bundle associated with a meromorphic function. This construction will be
important in Section 3.

Definition 1. The hyperplane line bundle H on CPn is the line bundle associated
to any hyperplane divisor.

That is, each hyperplane

Hα = {[z1, . . . , zn+1] |
n+1∑
j=1

αjzj = 0} ⊂ CPn

determines a line bundle and these bundles are all holomorphically isomorphic.
Here are two simple results. Together they show that the powers of H satisfy

(1.1).

Lemma 2.1. There is a bijection between the set of holomorphic sections of Hk

and the set of homogeneous polynomials of degree k in n+ 1 variables.

This can be seen directly by introducing the transition functions for [H]. An
abstract proof is given in [6, page 165].

Lemma 2.2. The dimension of the space of homogeneous polynomials of degree k
in n+ 1 variables is (

n+ k

n

)
and this quantity is of the order of Ckn, where C depends only on n.

Proof. We count the monomials in n + 1 variables of degree k. This is equivalent
to a well-known counting problem: In how many ways may k identical balls be
distributed into n+ 1 baskets? the answer is(

n+ k
n

)
.

Further, using Stirling’s Estimate we see that(
n+ k
n

)
∼

(
n+k
e

)n+k√
2π(n+ k)

n!
(
k
e

)k√
2πk

(2.1)

< Cnk
n.(2.2)

�

It is also possible to associate a line bundle to a meromorphic function is such a
way that the function is a quotient of global sections of the bundle. Of course this
bundle is usually non-trivial; it can be trivial only when the meromorphic function
is in fact a global quotient of functions on X. Starting with a meromorphic function
f , we may find a finite covering

X =
⋃
Uj

and holomorphic functions over Uj such that

f =
pj
qj

on Uj , and
pj
qj

=
pk
qk

on Uj ∩ Uk.

Let L be the line bundle with transition functions

gjk =
qj
qk
∈ O∗(Uj ∩ Uk).
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Then the collection of local sections {pj} and {qj} satisfy

pj = gjkpk

and
qj = gjkqk

on Uj ∩ Uk and so both p = {pj} and q = {qj} define global sections of L. The
global quotient p/q is our original meromorphic function f . This construction will
be very useful in the next section.

3. A Theorem of Siegel

Here is one of the first general results of the type of (1.1). It is due to Siegel [8].

Theorem 3.1. If X is a compact, complex manifold of dimension n and if L is a
holomorphic line bundle over X, then there is some constant depending only on X
and L such that

dim Γ(X,Lk) < Ckn.

We outline Siegel’s proof and then go over his beautiful application. In this
section we are following [5] and [1].

We start with two open coverings of X, {Wa} and {Va}, with Wa ⊂ Va and each
open set biholomorphic to a domain of holomorphy in Cn. This implies that L|Va

is trivial. Given a global section

s : X → L

we set
sa = s|Va

and consider sa to take values in C. This allows us to define the norms

||s||V = max
a

sup
z∈Va

|sa(z)|

and
||s||W = max

a
sup
z∈Wa

|sa(z)|.

Certainly
||s||W ≤ ||s||V .

Lemma 3.1. There exists a positive constant g, depending only on the transition
functions for L with respect to the covering {Wa}, such that

||s||V ≤ g||s||W .
Proof. This is clear since each p ∈ Va is also in some Wb and so

sa(p) = gabsb(p).

Thus
|sa(p)| ≤ g||s||W .

�

We now choose the open coverings in a special way. Let Pr denote the polydisc

Pr = {z ∈ Cn | ||zj || < r for j = 1, . . . , n}.
We can find open coverings {Wa} and {Va} and real numbers r0 and r1 with
0 < r0 < r1 such that each Wa is biholomorphic to Pr0 and each Va is biholomorphic
to Pr1 . The Schwarz Lemma provides a proof of the following result.
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Lemma 3.2. If F (z) is holomorphic on Pr1 and vanishes to order at heast h at
the origin, then

sup
Pr0

|F | ≤
(
r0

r1

)h
sup
Pr1

|F |.

Thus if the section s vanishes to at least order h at each of the points of X
corresponding to the origin in Pr1 , then

(3.1) ||s||W ≤
(
r0

r1

)h
||s||V ≤

(
r0

r1

)h
g||sW ||.

Thus

(3.2) h >
ln g

ln r1 − ln r0

implies that
s ≡ 0.

Let us summarize what has just been proved.

Lemma 3.3. There exist a finite number of points xa ∈ X, a = 1, . . . , N and an
integer h such that the only section of L which vanishes to at least order h at each
xa is the zero section. Further, there exists a constant C depending only on a fixed
covering of X so that h can be chosen to be any integer greater than C ln g, where
g depends only on bounds for the transition functions for L.

We can now prove Theorem 3.1.

Proof. Let Γ(X,L) be the complex vector space of holomorphic sections of L. Let
J(xa) be the space of jets up to order h at xa of holomorphic sections of L. Consider
the map

Γ(X,L)→ ⊕Na=1J(xa).

The Fundamental Lemma tells us that this map is injective. Since the dimension

of each J(xa) is

(
n+ h
h

)
,

we have

dim Γ(X,L) ≤ N
(
n+ h
h

)
.

We want to estimate the right hand side when h is large. We do this again using
Stirling’s formula.

So, as h→∞(
n+ h
h

)
=

(n+ h)!

h!n!
∼

√
1 + n

h (n+ h)n+h

enhhn!

∼ (n+ h)n

n!

∼ hn

n!
.

Now we replace L by Lk. This means that the transition functions are replaced
by their kth powers and so g becomes gk. Then h is replaced by c′k for some c′

depending on L and so

(3.3) dim Γ(X,Lk) < C

(
n+ c′k
c′k

)
< C ′kn.
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This completes the proof, based on [1], of Theorem 3.1. �

Siegel uses this theorem to give the first proof of a basic result in algebraic
geometry.

Theorem 3.2. The field of meromorphic functions on a compact, complex manifold
X of dimension n is an algebraic extension of the field of rational functions in d
variables, with d ≤ n.

Thus

K(X) ∼= Q(t1, . . . , td, θ), θ algebraic in t1, . . . , td.

Remark 1. A compact complex manifold with d = n is called a Moishezon mani-
fold.

It is not too hard to see that the theorem would follow if we could establish that
any set of n+ 1 meromorphic functions on X is algebraically dependent.

Recall that meromorphic functions on a complex manifold X are analytically
dependent if

df1 ∧ . . . ∧ dfm = 0

at each point of X at which the functions are all holomorphic. And they are
algebraically dependent if there is a nontrivial polynomial P over C with

P (f1, . . . , fm) = 0

at all such points. Applying d to this equation shows that algebraic dependence
implies analytic dependence. Here is the converse.

Theorem 3.3. If the meromorphic functions f1, . . . , fm on X are analytically de-
pendent, then they are also algebraically dependent.

This implies Theorem 3.2.
To prove this theorem we will need some minor modifications of Lemma 3.3.

First we replace Lk by a line bundle of the form Lk ⊗F s. The transition functions
for Lk ⊗ F s are of the form gkijf

s
ij and so are bounded by Ck+s for some C. So in

the proof of Theorem 3.3 the inequality (3.2) is replaced by

(3.4) h >
− lnCk+s

ln q

and inequality (3.3) is replaced by

(3.5) dim Γ(X,Lk ⊗ F s) < C

(
n+ c′(k + s)
c′(k + s)

)
< C ′(k + s)n.

Let E denote some line bundle and assume that local holomorphic coordinates
ζ1, . . . , ζn are specified in a neighborhoodof each xa and that the only sections we
consider are those that in a neighborhoodof xa are holomorphic functions of only
ζ1, . . . , ζm for some m ≤ n. Denote the space of such sections by Γ0(X,E). We have
restricted the set of sections so of course it still follows that a section vanishing to at

least order h at each xa must be identically zero. At each xa there are

(
m+ h
h

)
polynomials in m variables of degree less than or equal to h. So

dim Γ0(X,E) ≤ N
(
m+ h
h

)
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and as before

dim Γ0((X,Ek) ≤ C
(
m+ c′k
c′k

)
≤ C ′km.

And finally, we combine these two modifications.

(3.6) dim Γ0((X,Lk ⊗ F s) ≤ C ′(k + s)m.

We are now ready to prove Theorem 3.3. We change notation and start with an-
alytically independent meromorphic functions f1, . . . , fm and a meromorphic func-
tion f with

df ∧ df1 ∧ . . . ∧ dfm = 0

at each point where this makes sense. We need to find a polynomial such that
P (f1, . . . fm, f) = 0 at each point where the functions are all holomorphic. Let Lj
be the bundle associated to fj and let F be the bundle associated to f . Then each
fj is a global quotient of sections of

L = L1 ⊗ L2 ⊗ . . .⊗ Lm.

Further, fk11 · · · fkmm fs is a global quotient of Lk ⊗ F s where k = k1 + . . .+ km.
We write

fj =
sj
s0

sj , s0 global sections of L,

f =
φ

ψ
φ, ψ global sections of F.

We fix some positive integers r and s. Let

W0(r, s) = {polynomials of degree at most r

in each of X1, . . . , Xm

and degree at most s in Xm+1}

We want to eliminate the denominators in our global quotients and also to work
only with homogeneous polynomials. So let

W (r, s) = {Q(ξ, η,X1, . . . , Xm, Xm+1) = ξmrηsP (
X1

ξ
, . . . ,

Xm

ξ
,
Xm+1

η
), P ∈W0(r, s)}.

Thus Q ∈W (r, s) is homogeneous in the sense that

Q(aξ, bη, aX1, . . . , aXm, bXm+1) = amrbsQ(ξ, η,X1, . . . , Xm, Xm+1).

We may assume that at the points xa in the proof of Theorem 1.1

df1 ∧ . . . ∧ dfm 6= 0.

So these functions define a partial set of local coordinates which we use to define
Γ0(X,Lmr ⊗ F s).

Next define

Π : W (r, s)→ Γ0(X,Lmr ⊗ F s)
by

ΠQ = Q(s0, ψ, s1, . . . , sm, φ).

It suffices to prove that Π is not injective. The modifications of Theorem 1.1 apply
as long as (3.4) holds. Thus (3.6) holds with k replaced by mr:

dim Γ0(X,Lmr ⊗ F s) ≤ C ′(mr + s)m.



HOLOMOROPHIC SECTIONS OF POWERS OF A LINE BUNDLE 7

It is easy to see that

dim W (r, s) = (r + 1)m(s+ 1)

and so we choose r and s such that

(r + 1)m(s+ 1) > C ′(mr + s)m.

Thus Π is not injective.

4. Generalizations

There are several natural directions in which to seek generalizations of Theorem
3.1. One is to replace the compact manifold by an open subset Ω of a complex
manifold. Most analytic results about open subsets of a complex manifold are in
the context of pseudoconvexity. But the appropriate replacement for compactness
is pseudoconcavity.

Another direction is to replace holomorphic sections of L by ∂-closed differential
forms with values in L. But the space of such forms is infinite dimensional. (If s
is a smooth section of L, then ∂s is a ∂ -closed section of L ⊗ Λ(0,1)(Ω).) So one
looks at the dimensions of the Dolbeault cohomology instead.

And finally, one could combine these generalizations and look for upper bounds
for the cohomology of powers of a line bundle over an appropriate bounded domain.

4.1. Pseudoconcavity. Let Ω ⊂⊂ X be a domain in a complex manifold X of
dimension n.

Definition 2. A point q ∈ bΩ is an Andreotti pseudoconcave point if there exists a
fundamental system of neighborhoods {U} such that q is an interior point of each
of the holomorphic hulls

(Û ∩ Ω)U = {p ∈ U | |f(p)| ≤ sup
z∈U∩Ω

|f(z)|,∀f ∈ O(U)}.

A domain Ω is Andreotti pseudoconcave if each of its boundary points is.

Theorem 4.1. [1],[2] If Ω is Andreotti pseudoconcave and relatively compact and
if L is a holomorphic line bundle over Ω, then there is some constant depending
only on Ω and L such that

(4.1) dim Γ(Ω, Lk) ≤ Ckn.

This is Andreotti’s generalization of Siegel’s Theorem.
So if the Levi form has at least one negative eigenvalue (4.1) holds. This condition

can be relaxed to allow some degenerate Levi forms. A real hypersurface M in X
is minimal (in the sense of Trepreau) at a point q if there does not exist the germ
of complex hypersurface passing through q and contained in M . We say an open
set is minimal at a boundary point if the boundary is minimal at that point.

Theorem 4.2. If bΩ is minimal at all points and if the Levi form has no positive
eigenvalues then (4.1) holds.

For the proof, see [5].
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4.2. Demailly’s Morse Inequalities. Let M be a compact manifold and let f
be a Morse function. Let Cj be the number of critical points of f of index j. The
index of a function at a nondegenerate critical point is the number of negative
eigenvalues of its Hessian at that point. Let bj be the jth Betti number, that is
bj = dim Hj(M,R). The strong Morse inequalities assert that

Cj − Cj−1 + · · · ± C0 ≥ bj(M)− bj−1(M) + · · · ± b0(M).

In particular, for any

j ∈ {0, . . . , n = dimM},
we have the weak Morse inequalities

bj(M) ≤ Cj .

In a seminal paper [9], Witten outlined a new approach to the Morse inequalities
by relating them to the asymptotic behavior of a ”twisted” de Rham complex. In
effect, the problem is localized at the critical points and then solved by a compu-
tation in local coordinates.

In [4], Demailly recognized that one could obtain Morse inequalities for the
Dolbeault complex by replacing the study of the asymptotic behavior of the twisted
de Rham complex by a high tensor product of a line bundle. See also [7]. This
provides the extension of (1.1) to the dimensions of the cohomology groups. We
state a simplified version of his result.

Theorem 4.3. Let X be a compact complex manifold of dimension n and let L be
a line bundle over X. Then

dimHj(X,Lk) < Ckn, for 0 ≤ j ≤ n

where C depends on X and L but not on k.

4.3. Boundary behavior. It is now natural to generalize to complex manifolds
with boundary. Again, for ease of exposition, we present simplified results.

Theorem 4.4 (Berman [3]). Let X be a complex manifold of dimension n with
boundary and let L be a holomorphic line bundle over X. Assume that the Levy
form is nondegenerate at each point of the boundary and that for some j, 0 ≤ j ≤ n,
the Levy form never has precisely j negative eigenvalues. Then

dimHj(X,Lk) < Ckn

for some C that depends on X and L but not on k.

Finally, in the presence of pseudoconvexity we may allow some degeneracy of the
Levy form at the boundary.

Theorem 4.5 (Fu-Jacobowitz [5]). Let Ω ⊂⊂ X be a smooth pseudoconvex do-
main in a complex manifold and let L be a holomorphic line bundle over Ω that
extends smoothly up to the boundary. Assume that there exists a bounded contin-
uous function whose complex hessian is bounded from below by a positive constant
in a neighborhood of bΩ. Then for any 1 ≤ j ≤ n,

hj(Ω, Lk) ≤ Ckn

for some C that depends on Ω and L but not on k.
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