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Abstract. The optimal target dimensions are determined for totally real im-

mersions and for independent mappings into complex affine spaces. Our argu-

ments are similar to those given by Forster, but we use orientable manifolds
as far as possible and so are able to obtain improved results for orientable

manifolds of even dimension. This leads to new examples showing that the
known immersion and submersion dimensions for holomorphic mappings from

Stein manifolds to affine spaces are best possible.

1. Introduction

The following two theorems are easily proved by counting dimensions and ap-
plying the Thom Transversality Theorem. See [10] for a full discussion, and the
appendix for a brief account.

Definition. A smooth immersion f : M → CN is called totally real if f∗(TM)
does not contain any complex line. (All manifolds considered are assumed to be
smooth and second countable.) This is equivalent to requiring that

f∗(TM) ∩ i(f∗(TM)) = {0}.

Theorem 1.1. There exists a totally real immersion of each n-dimensional mani-
fold M into CN , provided N ≥ [ 3n2 ].

Remark 1.2. It follows that there also exists a totally real embedding into CN ,
since, on the one hand, the inequality implies that every mapping of M into R2N

may be approximated by an embedding [17, page 654] while, on the other hand,
the totally real immersions are open in the Whitney topology on functions.

Definition. A smooth mapping F : M → CN is called independent if its compo-
nent functions F1, . . . , FN satisfy dF1 ∧ · · · ∧ dFN 6= 0 at all points of M, in which
case the component functions are also called independent.

Theorem 1.3. For every manifold M of dimension n there is a smooth map F :
M → CN whose component functions are independent, provided N ≤ [n+1

2 ].

Theorems obtained using transversality, such as these, are often, but not always,
optimal in the sense that the target dimension cannot be decreased (in a case
such as Theorem 1.1) or increased (in a case such as Theorem 1.3). Recall that
a transversality argument implies that every n-dimensional manifold M has an
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immersion into R2n, but a more delicate argument due to Whitney decreases 2n to
2n− 1 for n > 1.

The aim of this paper is to prove the optimality of the theorems stated above,
by constructing and examining suitable simple examples (of closed manifolds) in all
positive dimensions. The arguments, which are very similar to those due to Forster
[3], are presented in the next two sections. In addition, in §4 we prove slightly
stronger (optimal) results for orientable manifolds having dimension of the form
4k + 2, and also for orientable manifolds of dimension 4k under the assumption
that the top Pontryagin class (or top dual Pontryagin class) vanishes.

In the final section we compare our results to those for holomorphic immersions
and submersions of Stein manifolds proved by Forster [3] and Forstnerič [4]. See
Chapter 8 of the recent book by Franc Forstnerič [5] for a full account of these
results.

The appendix outlines how to prove Theorems 1.1 and 1.3 using simple transver-
sality arguments.

2. Optimality for totally real immersions

We shall show that the target dimensions in Theorem 1.1 cannot be decreased.
This will be accomplished by finding manifolds M2n and M2n+1 in all positive
dimensions so that

• M2n does not admit a totally real immersion into CN for N = 3n− 1, and
• M2n+1 does not admit a totally real immersion into CN for N = 3n.

We provide four families of examples according to the residue of the dimension
of M modulo 4. Let

M4k = CP2 × · · · ×CP2 = (CP2)×k

be the product of k copies of the complex projective plane.

Theorem 2.1.

• M4k does not admit a totally real immersion into CN for N = 6k − 1.
• M4k+1 = M4k × S1 does not admit a totally real immersion into CN for
N = 6k.
• M4k+2 = M4k ×RP2 does not admit a totally real immersion into CN for
N = 6k + 2.
• M4k+3 = M4k × RP2 × S1 does not admit a totally real immersion into

CN for N = 6k + 3.

We first reduce the proof to a statement about bundles.

Lemma 2.2. If a manifold M has a totally real immersion into CN , then there
exists a complex vector bundle Q over M such that

(C⊗ TM)⊕Q

is trivial of rank N .

Remark 2.3. This condition in fact characterizes manifolds with totally real im-
mersions into CN (see [10]) and includes Theorem 1.1 (see the appendix).
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Proof. Let f : M → CN be a totally real immersion and define a map

ψ : C⊗ TM → T 1,0(CN )

by ψ(v) = f∗v − iJf∗v. It suffices to show that ψ is injective on each fiber. So let
p ∈M , ξ and η ∈ TMp and assume that ψ(ξ + iη) = 0. This implies that

f∗(ξ) + Jf∗(η) = 0.

If η 6= 0, then f∗(TM) would contain the complex line spanned by f∗(η) and Jf∗(η).
Since f is a totally real immersion, we conclude instead that η, and hence also ξ,
is zero. �

We now use Chern classes to rewrite the triviality condition of Lemma 2.2 in
terms of cohomology classes. Denote the total Chern class of a complex vector
bundle B over M by

c(B) = 1 + c1(B) + · · ·+ ck(B)

where cj(B) ∈ H2j(M ; Z) and k = min(rankB, [dimM
2 ]). We use the following

properties of Chern classes. An excellent reference is [12].

(1) (Whitney formula) c(B1 ⊕B2) = c(B1) ` c(B2) where the right hand side
denotes the cup product of cohomology classes.

(2) If M has a complex structure and dim M = 2n, then we write

c(M) = c(T 1,0(M)) = 1 + c1(M) + · · ·+ cn(M).

So for such an M

C⊗ TM = c(T 1,0(M)⊕ T 0,1(M))

= c(T 1,0(M)) ` c(T 0,1(M)

= (1 + c1(M) + · · ·+ cn(M))

` (1− c1(M) + · · ·+ (−1)ncn(M)).

(3) If B is trivial then c(B) = 1.

Thus if M admits a totally real immersion into CN then there exists some
complex vector bundle Q having rank equal to N − dimM such that

(2.1) c(C⊗ TM) ` c(Q) = 1.

So the proof of Theorem 2.1 has been reduced to the verification that in the first two
cases there is no bundle Q of rank 2k − 1 and in the last two cases no bundle Q of
rank 2k satisfying (2.1). We present a brief proof of the following well-known result
for the sake of completeness (cf. [12, Section 14], where a different terminology is
used for the complex line bundle appearing in the following lemma).

Lemma 2.4. Let a denote the first Chern class of the hyperplane line bundle O(1)
on CP2. Then

c(C⊗ TCP2) = 1− 3a2.

Proof. The total Chern class of the complex projective plane is given by

c(CP2) = c(T 1,0(CP2)) = (1 + a)3.

It follows that
c(T 0,1(CP2)) = (1− a)3

and so
c(C⊗ TCP2) = (1− a2)3.
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The desired result follows since a3 = 0 for dimensional reasons. �

It is known that the Chern class a introduced above generates H2(CP2; Z).
Similarly the first Chern class of the complexification of the tautological line bundle
ξ of RP2, call it b, generates H2(RP2; Z) (this cohomology group is isomorphic to
Z2, a cyclic group of order 2). Indeed, the mod 2 reduction of b is the second
Stiefel-Whitney class w2(2ξ) of twice the tautological line bundle, so is equal to the
square of w1(ξ), which is nonzero.

Let M be one of the manifolds in Theorem 2.1. Let a1, . . . , ak be the pull-backs
of a to M under the corresponding projections to CP2, so that a3i = 0 for all i.
Let b1 be the pull-back of b to M for each of the two cases in which M contains a
factor RP2. The following result is now clear.

Lemma 2.5.

c(C⊗ TM4k) = c(C⊗ TM4k+1) = (1− 3a21) · · · (1− 3a2k)

c(C⊗ TM4k+2) = c(C⊗ TM4k+3) = (1− 3a21) · · · (1− 3a2k)(1 + b1).

We show first that (2.1) does not have a solution Q of rank less than 2k for
M = M4k. Suppose a complex vector bundle Q satisfies

(1− 3a21) · · · (1− 3a2k)c(Q) = 1.

This implies that c(Q) = (1+3a21) · · · (1+3a2k) which, in turn, implies that the rank
of Q is at least 2k since c2k(Q) = 3ka21 · · · a2k 6= 0, in view of the Künneth formula.
The same argument applies in case dimM ≡ 1 mod 4.

We next suppose that M = M4k+2. Suppose a complex vector bundle Q satisfies

(1− 3a21) · · · (1− 3a2k)(1 + b1)c(Q) = 1.

This implies that c(Q) = (1+3a21) · · · (1+3a2k)(1+b1) which, in turn, implies that the
rank of Q is at least 2k+1 since c2k+1(Q) = 3ka21 · · · a2kb1 6= 0 in H4k+2(M ; Z) ∼= Z2,
where we again make use of the Künneth formula and the fact that the coefficient
3k is odd. The same argument applies in case dimM ≡ 3 mod 4.

The proof of Theorem 2.1 is now complete.

3. Optimality for independent functions

Our aim is to show that for each n > 0, if N > [n+1
2 ] then some n-manifold M

admits no independent mapping of M into CN . So Theorem 1.3 is also optimal.
Assuming that F : M → CN is an independent mapping, we extend the differen-

tial to a complex linear surjection dF : C⊗TM
p → CN for each point p ∈M, and so

obtain a surjective bundle mapping dF : C⊗ TM →M ×CN . Then K := ker(dF )
is a subbundle of C⊗ TM, and therefore

C⊗ TM ∼= K ⊕Nε.

where ε denotes a trivial complex line bundle. It follows that K and C⊗ TM have
the same Chern classes.

It should come as no surprise that we will once again use the manifolds appearing
in Theorem 2.1.

Theorem 3.1.

• M4k does not admit an independent mapping to CN for N > 2k.



OPTIMALITY FOR TOTALLY REAL IMMERSIONS AND INDEPENDENT MAPPINGS 5

• M4k+1 = M4k × S1 does not admit an independent mapping to CN for
N > 2k + 1.
• M4k+2 = M4k ×RP2 does not admit an independent mapping to CN for
N > 2k + 1.
• M4k+3 = M4k ×RP2 × S1 does not admit an independent mapping to CN

for N > 2k + 2.

Proof. For M4k = (CP2)k, we have

c2k(C⊗ TM4k) = (−1)k3ka21 · · · a2k 6= 0

in the notation of Lemma 2.5. Hence for an independent mapping F : M4k → CN

we have c2k(K) 6= 0 which implies rankK ≥ 2k and so N ≤ 2k.
For M4k+1 and an independent mapping F : M4k+1 → CN we again have

rankK ≥ 2k and conclude that N ≤ 2k + 1.
For M4k+2 we have

c2k+1(C⊗ TM4k+2) = (−1)k3ka21 · · · a2kb1 6= 0

in H4k+2(M4k+2; Z) ∼= Z2, using the notation of Lemma 2.5. Hence for an inde-
pendent mapping F : M4k+2 → CN we have rankK ≥ 2k + 1 and conclude that
N ≤ 2k + 1.

Finally, for M4k+3 and an independent mapping F : M4k+3 → CN we again
have rankK ≥ 2k + 1 and conclude that N ≤ 2k + 2, as desired. �

Note that if M is a complex manifold and if F : M → CN is required to be
holomorphic, then the independent maps are precisely the holomorphic submersions
of M into CN . Compare the discussion in the final paragraph of §5.

4. Orientable manifolds of even dimension

Note that the real projective plane, and the manifolds appearing in Theorem 2.1
having it as a factor, are not orientable. On the other hand, every orientable 2-
manifold admits a totally real immersion into C2 (e.g., see [10, pages 75–76] for the
case of a compact orientable 2-manifold; the case of a connected open orientable
2-manifold is simpler, since then the manifold is parallelizable), which improves
on Theorem 1.1. We shall generalize this by showing that each orientable closed
manifold of dimension 4k + 2 admits a totally real immersion into C6k+2. At the
same time, our argument allows us to obtain an improved result for orientable 4k-
manifolds having vanishing top dual Pontryagin class (dual Pontryagin classes are
defined in the final paragraph of the proof).

Theorem 4.1. Every orientable (4k + 2)-manifold M admits a totally real im-
mersion into C6k+2. Moreover, this result is optimal. In addition, if an orientable
4k-manifold has vanishing top dual Pontryagin class then it admits a totally real
immersion into C6k−1.

Proof. Let M be an orientable (4k+2)-manifold which we assume to be connected,
so that H4k+2(M ; Z) ∼= Z if M is compact, while this cohomology group vanishes in
case M is noncompact (since in the latter case M has the homotopy type of a CW-
complex of dimension less than 4k+2, a well-known result for which a proof is given
by Phillips [13, Lemma 1.1]). By Theorem 1.1 there is a totally real immersion of
M into C6k+3, and as a consequence of Lemma 2.2 we have

(C⊗ TM)⊕Q ∼= (6k + 3)ε
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where ε denotes a trivial complex line bundle and Q is a complex vector bundle of
rank 2k+ 1. Let’s show that Q ∼= Q′⊕ ε for a complex vector bundle Q′ of rank 2k.

We know ([12, page 158]) that c2k+1(Q) is equal to the Euler class e(QR) of Q
viewed as an oriented real vector bundle. Moreover, this Euler class is the primary
obstruction to the existence of a nowhere zero cross-section of QR ([12, Theorem
12.5]); in the case we are considering, it is the sole obstruction due to dimensional
considerations. So our aim is to show that c2k+1(Q) vanishes. Now this Chern class
can be expressed as a polynomial in the Chern classes ci(C ⊗ TM), and in each
monomial which occurs in this polynomial some index i must be odd, and therefore
2c2k+1(Q) = 0 because 2ci(C ⊗ TM) = 0 when i is odd ([12, page 174]). Hence
c2k+1(Q) = 0 in H4k+2(M ; Z), since this group is either infinite cyclic or zero.

Replacing Q by Q′ ⊕ ε in the formula displayed above, we are in a range in
which the trivial line bundle ε can be cancelled (Husemöller presents the details at
the start of the chapter “Stability properties of vector bundles” in his book Fibre
Bundles [8]; see the Remark following this proof), so we obtain an isomorphism

(C⊗ TM)⊕Q′ ∼= (6k + 2)ε

which in view of Remark 2.3 implies the existence of a totally real immersion of M
into C6k+2.

We next point out that (CP2)k × S2 provides an example of an oriented man-
ifold having dimension 4k + 2 which does not admit a totally real immersion into
C6k+1, as follows immediately from the reasoning in the proof of Theorem 2.1. We
have therefore found optimal totally real immersions of orientable manifolds having
dimensions of the form 4k + 2.

Finally, let M be an orientable 4k-manifold. We know that there is a totally real
immersion of M into C6k, hence there is a complex vector bundle Q of rank 2k for
which

(C⊗ TM)⊕Q ∼= 6kε.

Now let NM denote its normal bundle for an embedding (or immersion) into a
Euclidean space, so that TM ⊕NM is trivial. It follows from the Whitney formula
that c(Q) and c(C ⊗ NM) are both inverses to c(C⊗ TM) and so are equal to
each other. By the dual Pontryagin classes of M we mean the Pontryagin classes
of the normal bundle NM , which are equal up to sign with the even Chern classes
of C⊗NM and so with the Chern classes c2i(Q). The hypothesis therefore means
that the top Chern class c2k(Q) vanishes. As in the first part of the proof, this
implies that Q ∼= Q′ ⊕ ε for a complex vector bundle Q′ of rank 2k − 1, which in
turn implies the existence of a totally real immersion of M into C6k−1. �

Remark 4.2. The result proved by Husemöller which was used in the previous
argument is the final assertion below. Let X be an n-dimensional CW-complex,
and let Vectk(X) denote the set of isomorphism classes of k-dimensional complex
vector bundles over X. One defines a map Vectk(X)→ Vectk+1(X) by forming the
Whitney sum with the trivial complex line bundle over X. This map is surjective
if k ≥ [n2 ], and is bijective if k ≥ [n+1

2 ]. See also [5, Theorem 7.3.7].

We now turn to the analogue of the previous theorem for the case of independent
mappings, and obtain similar improvements to Theorem 1.3 for orientable closed
manifolds of even dimension, as one might be led to anticipate from the comments
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at the start of this section concerning orientable 2-manifolds. The final assertion
below is a partial converse to [9, Theorem 1.2].

Theorem 4.3. Every orientable (4k+2)-manifold M admits an independent map-
ping to C2k+2. Moreover, this result is optimal. In addition, if an orientable 4k-
manifold has vanishing top Pontryagin class then it admits an independent mapping
to C2k+1.

Proof. Let M be an orientable (4k+2)-manifold which we assume to be connected,
so that H4k+2(M ; Z) ∼= Z if M is compact, while this cohomology group vanishes in
case M is noncompact. We know there is an independent mapping of M to C2k+1,
and that consequently we have

C⊗ TM ∼= K ⊕ (2k + 1)ε

where K is a complex vector bundle of rank 2k + 1. Let’s show that K ∼= K ′ ⊕ ε
for a complex vector bundle K ′ of rank 2k.

As in the proof of Theorem 4.1, we need only show that c2k+1(K) vanishes. Now
this Chern class coincides with c2k+1(C⊗ TM), which has order 2 ([12, page 174])
and so vanishes since it lies in an infinite cyclic group.

Replacing K by K ′⊕ε in the formula displayed above, we obtain an isomorphism

C⊗ TM ∼= K ′ ⊕ (2k + 2)ε

which in view of the analogue of Remark 2.3 for independent mappings (see [10])
implies the existence of an independent mapping of M into C2k+2.

We next point out that (CP2)k × S2 provides an example of an oriented man-
ifold having dimension 4k + 2 which does not admit an independent mapping to
C2k+3, as follows immediately from the reasoning in the proof of Theorem 3.1. We
have therefore found optimal totally real immersions of orientable manifolds having
dimensions of the form 4k + 2.

Finally, let M be an orientable 4k-manifold. We know that there is an indepen-
dent mapping of M to C2k, hence there is a complex vector bundle K of rank 2k
for which

C⊗ TM ∼= K ⊕ 2kε.

Since K has the same Chern classes as C⊗ TM and the top Pontryagin class of M
coincides up to sign with c2k(C⊗ TM), the hypothesis therefore means that the
top Chern class c2k(K) vanishes. As in the first part of the proof, this implies that
K ∼= K ′ ⊕ ε for a complex vector bundle K ′ of rank 2k − 1, which in turn implies
the existence of an independent mapping of M to C2k+1, in view of the analogue
of Remark 2.3 for independent mappings. �

Remark 4.4. One knows that every closed orientable 3-manifold is parallelizable
(Stiefel’s theorem, e.g. see [12, Problem 12-B]). It is less well known that every
open connected orientable 3-manifold admits an immersion into R3 and therefore is
parallelizable, which was proved by J. H. C. Whitehead [16]. Hence every orientable
3-manifold admits a totally real immersion into C3, which is also an independent
mapping.

On the other hand, Theorem 2.1 shows that RP2 × S1 does not admit a totally
real immersion into C3. From Rudin’s result [14] that the Klein bottle admits a
totally real embedding into C2 it follows that the product of the Klein bottle and
S1 is a nonorientable 3-manifold that does admit a totally real embedding into C3.



8 PAK TUNG HO, HOWARD JACOBOWITZ, AND PETER LANDWEBER

The positive results for orientable 3-manifolds suggest that improvements to the
theorems in §1 might be possible for a suitable class of orientable manifolds of
dimension 4k + 3. The best results obtained in this direction assert that for an
open connected orientable (4k + 3)-manifold whose stable tangent bundle admits
a complex vector bundle structure, a totally real immersion into C6k+3 and an
independent mapping to C2k+3 exist; in fact, it suffices that all Stiefel-Whitney
classes of odd dimension vanish for the tangent bundle. The key ingredient in the
proof of the latter assertion is due to E. Thomas [15] (see also [12, Problem 15-D]),
who showed that for a real vector bundle E each odd Chern class c2k+1(C⊗E) of
its complexification is equal to β(w2k(E)w2k+1(E)), where β denotes the Bockstein
coboundary associated to the exact sequence of coefficient groups

0→ Z
2−→ Z→ Z2 → 0 .

5. Holomorphic immersions and submersions of Stein manifolds

We start by recalling the relation of totally real immersions to holomorphic im-
mersions of Stein manifolds. Doing this allows us to give another proof of Theorem
1.1, as follows. Whitney showed in [17] that any smooth n-dimensional manifold
M has a compatible real analytic structure. In the complexification of this struc-
ture, there is a Stein neighborhood of M [6]. Eliashberg and Gromov proved that
any Stein manifold of dimension n admits a holomorphic immersion into CN when
N ≥ [ 3n2 ]; see [7, pages 65–75], [4, page 151], or [5, Section 8.5]. M is totally real
in its Stein neighborhood and so the restriction of a holomorphic immersion of the
Stein neighborhood to M is a totally real immersion M → CN .

We now show that the manifolds in Theorem 2.1 yield new examples showing
that the target dimension [ 3n2 ] for holomorphic immersions of Stein manifolds of
complex dimension n is optimal. Observe that a real analytic and totally real
immersion extends to a holomorphic immersion of a Stein neighborhood.

Theorem 5.1. There exists a Stein manifold of each dimension n that cannot be
holomorphically immersed into CN if N < [ 3n2 ].

Proof. This follows immediately from Theorem 2.1 and the observation that if M
does not have a totally real immersion into CN , then a Stein neighborhood of M
in its complexification cannot have a holomorphic immersion into CN . �

Forster [3] (see also [2]) gave the first examples of Stein manifolds satisfying the
conclusions of this theorem. His examples are obtained from the Stein surface

Y = {[x : y : z] ∈ CP2 : x2 + y2 + z2 6= 0},
by putting Xn = Y ×m for even n = 2m, and Xn = Y ×m ×C for odd n = 2m+ 1.
Forster showed that Y contains RP2 as a deformation retract and a totally real
submanifold, and went on to show that the Stein manifolds Xn do not admit
holomorphic immersions into CN for N < [ 3n2 ]. If one uses the manifolds (RP2)×2k

in place of M4k = (CP2)×k in Theorem 2.1, the proof given there still works (and
is essentially the argument due to Forster); but the results presented in §4 require
examples that are orientable manifolds in dimensions divisible by 4, so we could
not use powers of RP2 in these dimensions.

To immerse all smooth manifolds of a given dimension, one expects the target
space to be approximately twice the dimension of the manifold. So a smooth
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immersion of a manifold of complex dimension n into CN should require that N
be roughly 2n. The condition of being Stein imposes topological restrictions on the
manifold which are reflected in lower immersion dimensions. For example, an easy
argument with Stiefel-Whitney classes shows that the Stein manifolds Xn used by
Forster and discussed briefly above do not even have smooth immersions into the
corresponding targets R2N , when N < [ 3n2 ]. (This can be viewed as an instance of
the Oka principle; a problem for suitable holomorphic mappings of a Stein manifold
has a solution if and only if the corresponding problem for smooth mappings has a
solution.)

Finally, we recall the relation of independent mappings to holomorphic sub-
mersions of Stein manifolds. Doing this leads to another proof of Theorem 1.2, as
follows. As noted at the start of this section, any smooth n-dimensional manifold M
has a compatible real analytic structure, and the complexification of this structure
contains a Stein neighborhood of M . Forstnerič has proved in [4, Theorem I] (see
also [5, Section 8.12]) that every n-dimensional Stein manifold admits [n+1

2 ] holo-
morphic functions with pointwise independent differentials, and that this number is
maximal for every n. Theorem 1.3 follows at once, since holomorphic functions with
pointwise independent differentials coincide with independent functions as defined
in §1. In addition, the simple reasoning in the proof of Theorem 5.1 immediately
yields the maximality asserted in Forstnerič’s theorem as a consequence of Theo-
rem 3.1. To round out this brief discussion, observe that a holomorphic mapping
f : X → CN with component functions f1, . . . , fN is a holomorphic submersion if
and only if its component functions are independent.

6. Appendix

We present three simple applications of transversality arguments.

6.1. Totally real immersions. We identify CN with the pair (R2N , J) where
J : R2N → R2N is a linear isomorphism with J2 = −Identity. Then an immersion
f : M → CN is totally real if for the underlying real map

fR : M → R2N

we have

(6.1) fR∗(TM) ∩ JfR∗(TM) = {0}.

Let J1(M,R2N ) be the one-jet bundle over M . If U ⊂ M is a coordinate patch
then the restriction of J1(M,R2N ) to U can be coordinatized by

(p, q, a1, . . . , an)

where p ∈ U , q ∈ R2N , aj ∈ R2N , and n = dimM . Note that we think of q as a
point in R2N and each aj as a column vector. Denote the 2N×n matrix (a1 · · · an)
by A. If we write, at some point p ∈M and using local coordinates

j1(f) = (p, q, a1, . . . , an)

with aj = ∂f
∂xj

, then the condition that f is an immersion is that rankA = n and

the condition that f is a totally real immersion is that rank (A, JA) = 2n where
(A, JA) is the 2N × 2n matrix (a1 · · · an Ja1 · · · Jan).
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We describe a subset Σ ⊂ J1(M,R2N ) by giving it as a subset of J1(M,R2N )|U
for each U in a coordinate covering of M . Namely

Σ = {(p, q, a1, . . . , an) : p ∈ U, q ∈ R2N , rank (A, JA) < 2n}.
Σ is a stratified subset of J1(M,R2N ) in the sense of [1]. We note for later use
that rank (A, JA) is even and that when rank (A, JA) = 2n − 2 we may relabel
a1, . . . , an to obtain that

{a1, . . . , an−1, Ja1, . . . , Jan−1}
is an independent set.

The first partial derivatives of any smooth map f : Mn → R2N determine a
section j1(f) : M → J1(M,R2N ) and the image j1(f)(M) is a submanifold of
dimension n. Clearly, f is a totally real immersion if and only if

j1(f)(M) ∩ Σ = ∅.
By the simplest case of the Thom Transversality Theorem (see, for example, [1,
page 17]) any f : Mn → R2N (even the constant map) may be perturbed to yield
a totally real immersion provided that at a generic point of Σ we have

(6.2) codim Σ > n.

Note that at a generic point rank (A, JA) = n − 2. So we may assume that the
vectors

a1, . . . , an−1, Ja1, . . . , Jan−1

are independent. A nearby point (p′, q′, b1, . . . , bn) is thus in Σ exactly when

(6.3) bn ∈ linear span {b1, . . . , bn−1, Jb1, . . . , Jbn−1}.
We complete this latter set to a basis for R2N and write

b =

n−1∑
1

(αjb
j + βjJb

j) +

2N−2(n−1)∑
1

γke
k.

We now see that (6.3) gives rise to the independent conditions

γ1 = 0, . . . , γ2N−2(n−1) = 0.

So the codimension of Σ is 2N − 2(n− 1) and (6.2) holds provided N ≥ [ 3n2 ]. This
proves Theorem 1.1.

6.2. Independent maps. To study independent complex-valued maps Mn → Cr

we write the fibers of J1(M,Cr) in local coordinates as

J1(M,Cr) = {(p, q, α1, . . . , αn)}
where p ∈M , q ∈ Cr (thought of as a point), and αj ∈ Cr (thought of as a column
vector). For F : M → Cr we write

j1(F ) = (p, F (p),
∂F

∂x1
, . . . ,

∂F

∂xn
).

Previously, we wrote the conditions for F1, . . . , Fn to be independent as dF1 ∧ · · · ∧
dFr 6= 0. This is the same as requiring that the r × n matrix

(
∂F

∂x1
· · · ∂F

∂xn
)

has rank r.
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So now we define Σ by

(6.4) Σ = {(p, q, α1, . . . , αn), rankA < r}
where A is the complex r× n matrix (α1 · · ·αn). More precisely, Σ is the subset of
J1(M,C) which has (6.4) as its local expression.

We seek to compute the codimension of Σ. Working at a generic point and
relabeling the coordinates of Cr if necessary we assume

α1, α2, . . . , αr−1

are linearly independent and extend to a basis

α1, α2, . . . , αr−1, e1, e2, . . . , en−(r−1).

For a nearby point (p′, q′, β1, β2, . . . , βr) to be in Σ we need that in the complex
linear combination

βr =

r−1∑
1

σjβ
j +

n−(r−1)∑
1

γke
k

each γk is zero. This gives us 2(n− r + 1) independent real conditions and so this
number is the codimension of Σ. The condition that codim Σ > n becomes

r ≤ [
n+ 1

2
].

This proves Theorem 1.3.

6.3. About Lemma 2.2. As a third example of a transversality calculation we
show that if B is a complex vector bundle over a real manifold of dimension n then
there is a complex vector bundle Q of rank [n2 ] such that B ⊕Q is trivial. We will
then use this to relate Lemma 2.2 to Theorem 1.1.

Lemma 6.1. Let B be a complex vector bundle of rank r over a manifold M of
dimension n. There exists a set of [n/2] + r global sections of B which span the
fiber of B at each point of M .

Proof. Let rankB = r, choose a positive integer k, and let

B = B ⊕B ⊕ · · · ⊕B = B⊕k

be the direct sum of B with itself k times. Let

ζ = (ζ1, . . . , ζk)

denote a point in the fiber of B and let Σ be the subset of B whose fiber over a
point p ∈M is given by

Σ|p = {ζ : {ζ1, . . . , ζk} does not span B|p}.
At a generic point of Σ, and after relabeling, ζ1, ζ2, . . . , ζr−1 and some other section
e may be taken to be a basis for the fibers over a neighborhood of p. For any nearby
point ζ ′ we have the linear combinations

ζ ′j =

r−1∑
k=1

Cjkζk + γje for j = r, . . . , k.

So Σ is locally defined by the independent complex equations γj = 0 and therefore
the codimension of Σ is 2(k−r+1) and our global spanning sections exist provided
k ≥ [n2 ] + r. �



12 PAK TUNG HO, HOWARD JACOBOWITZ, AND PETER LANDWEBER

Now set a = [n2 ] + r and let ζ1, . . . , ζa be global sections of B that span the fiber
at each point of M . The map M ×Ca → B given by

Λ(λ1, . . . , λa) =
∑

λjζj

is surjective. So we have an isomorphism of bundles

B ⊕Q = M ×Cn+r

where Q is the kernel of Λ. In particular, there exists Q of rank [n2 ] so that

(C⊗ TM)⊕Q
is the trivial bundle of rank [ 3n2 ]. Thus by the first part of Remark 2.3, M has a

totally real immersion into CN , N = [ 3n2 ]. Theorem 1.1 then follows.
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