CR Structures on Open Manifolds

Howard Jacobowitz

Rutgers University - Camden

Theorem (with P. Landweber)

lf

$$H_p(M^{2n+k}; \mathbf{Z}) = 0 \text{ for } p \ge n+k+1$$

then every smooth almost CR structure of codimension k on M is homotopic to a C^{ω} CR structure of codimension k.

Let *M* be a manifold of dimension 2n + k with k > 0.

An almost CR structure of codimension k on M is a complex subbundle $B \subset \mathbf{C} \otimes T(M)$ of complex rank n that satisfies $B \cap \overline{B} = \{0\}$.

A CR structure of codimension k on M is an almost CR structure B of codimension k that in addition is involutive.

 $[B,B] \subset B$

Example A generic immersion is an immersion *f*

$$f: M^{2n+k} o \mathbf{C}^{\mathbf{n}+\mathbf{k}}$$

such that

$$(\mathbf{C}\otimes T(M))\cap f^*T^{0,1}(\mathbf{C^{n+k}})$$

has complex rank n at all points of M.

Then

$$B = (\mathbf{C} \otimes T(M)) \cap f^*T^{0,1}(\mathbf{C}^{\mathbf{n}+\mathbf{k}})$$

defines a CR structure on M.

When this agrees with a given CR structure, we say that f is a CR immersion.

Lemma

If M has a C^{ω} CR structure B of codimension k then there exists an open covering

$$M = \bigcup_j \mathcal{O}_j$$

and C^{ω} generic CR embeddings

$$f_j: \mathcal{O}_j \to \mathbf{C}^{n+k}.$$

Further, for each pair (i, j) with $\mathcal{O}_i \cap \mathcal{O}_j \neq \emptyset$ there exists an open set U_{ij} containing $f_i(\mathcal{O}_i \cap \mathcal{O}_j)$ and a biholomorphism $\gamma_{ij} : U_{ji} \to U_{ij}$ with

$$f_i = \gamma_{ij} \circ f_j \text{ on } \mathcal{O}_i \cap \mathcal{O}_j.$$

Follow the approach of topologists to foliations.

- **1** Define an HCR by weakening the definition of a CR structure.
- If *M* admits an HCR and if C ⊗ T(M)/B is isomorphic to a bundle associated to the HCR, then *M* admits a CR structure.
- Topological conditions on *M* imply that these hypotheses are satisfied.

Foliation of co-dimension q

- An open covering $M^{m+q} = \bigcup_j \mathcal{O}_j, \ j \in A$,
- ② smooth maps f_j : \mathcal{O}_j → $\mathbf{R}^{\mathbf{q}}$,
- Solution Soluti

$$f_i = \gamma_{ij} \circ f_j$$
 on $\mathcal{O}_i \cap \mathcal{O}_j$.

Haefliger foliation

- An open covering $M^{m+q} = \bigcup_j \mathcal{O}_j$, $j \in A$,
- **2** continuous maps $f_j : \mathcal{O}_j \to \mathbf{R}^{\mathbf{q}}$,
- Solution is a state of a sta

$$f_i = \gamma_{ij} \circ f_j$$
 on $\mathcal{O}_i \cap \mathcal{O}_j$.

 $\gamma_{ij} = \gamma_{ik}\gamma_{kj}$

Typical theorem from foliation theory.

Let M be compact. If M has a trivial sub-bundle of rank q then it has a q codimension foliation.

Haefliger CR structure (HCR structure)

- An open covering $M = \bigcup_j \mathcal{O}_j$, $j \in A$,
- 2 continuous maps $f_j : \mathcal{O}_j \to \mathbf{C}^{n+k}$,
- **③** local biholomorphisms γ_{ij} of **C**^{*n*+*k*} defined for each pair (*i*, *j*) such that $\mathcal{O}_i \cap \mathcal{O}_j \neq \emptyset$ satisfying:
- $f_i = \gamma_{ij} \circ f_j$ on $\mathcal{O}_i \cap \mathcal{O}_j$.
- $\gamma_{ik} = \gamma_{ij} \circ \gamma_{jk}$ at all points where both sides are defined.

If M^{2n+k} admits an HCR then there exists some X^{4n+3k}

$$\begin{array}{c} X \\ \pi \\ M \end{array}$$

such that each fiber $\pi^{-1}(p)$ is a complex manifold and a section $\iota: M \to X$.

Want to perturb ι to some immersion $F:M\to X$ such that the composite map

$$\mathbf{C}\otimes T(M)
ightarrow \mathbf{C}\otimes T(X)
ightarrow T_f^{1,0}$$

is surjective.

Then ker $\mu \mathcal{F}_*$ is a co-dimension q CR structure on M.

General philosophy: To find a map

$$F: M \rightarrow X$$

with certain properties, start with a map

 $G:TM \to TX$

with the corresponding properties.

h-principle (Thom?, Smale, Phillips, Gromov)

Associated to HCR there is a normal bundle, ν .

The transition functions for this normal bundle are

$$g_{ij}=d\gamma_{ij}.$$

Theorem

If $\mathbf{C} \otimes T(M)/B$ is isomorphic to the normal bundle ν of a HCR structure, then B can be deformed to a CR structure.

Note that the hypothesis implies that M admits a HCR structure.

Why does the vanishing of the higher homology groups imply

 $\mathbf{C}\otimes T(M)/B\cong \nu?$

Recall the classifying space BGL(m) for vector bundles of rank m over paracompact manifolds.

{ isomorphism classes of vector bundles of rank m} $\xrightarrow{\operatorname{cl}(\nu)} [M, BGL(m)]$ There is also a classifying space for HCR structures, $\mathcal{B}_{n,k}$ which has its own normal $\nu_{n,k}$. Let $\nu = TM/B$ and write $TM = \nu \oplus B$.

$$\mathcal{B}_{n,k} \times BGL(n)$$

$$\downarrow \operatorname{cl}(\nu_{n,k}) \times \operatorname{id}$$

$$M \xrightarrow{\operatorname{cl}(\nu) \times \operatorname{cl}(B)} BGL(n+k) \times BGL(n).$$

We need to lift the bottom arrow and thereby show that ν is the normal bundle of some HCR structure.

The obstructions to lifting lie in $H^{j+1}(M, \pi_j(\mathcal{F}))$. Known result

$$\pi_j(\mathcal{F}) = 0$$
 for $0 \leq j \leq n+k$.

So we need

$$H^{n+k+1+i}(M,\pi_{n+k+i}(\mathcal{F}))=0 \quad 0\leq i.$$

This holds, provided

$$H_p(M^{2n+k}; \mathbf{Z}) = 0$$
 for $p \ge n+k+1$

as a consequence of the Universal Coefficient Theorem.

Open Questions

Let B be an almost CR structure. We seek conditions under which we can prove more than the existence of deformations into CR structures.

Or find obstructions to these improvements.

1- If B is already CR on some open set, can the deformation be taken to leave B unchanged on at least a slightly smaller open set?

2- If *B* is strongly pseudoconvex, can the deformation be taken to produce a strongly pseudoconvex CR structure?

And best of all

3- Can we do both of these simultaneously?

If so then every five dimensional strictly pseudoconvex CR structure is locally realizable.

Another problem to show existence or find obsructions:

Can every smooth CR structure on a manifold be deformed to become a real analytic CR structure? Can the deformation be taken to be small?