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Sometimes theorems can be proved by just counting dimensions.
The prototype is: If X and Y submanifolds of Z then there exists a

perturbation of X such that X∩ Y=∅ provided dim X+dim Y < dim
Z.

Want to do three examples of such theorems and focus on whether
the results obtained by such simple arguements are in fact optimal.
Somewtimes they are, sometimes they are not.

Theorem 1 (Whitney 1936). If V is a manifold and if N ≥ 2dim V
then there is a smooth immersion of V into RN . Also if f : V → RN

is any smooth map, then there is a smooth immersion of V into RN

which approximates f .

Proof. In terms of local coordinates,

f : V → RN

has as its jet

j1(f) = (p, f(p),
∂f j

∂vi
)

where 1 ≤ j ≤ N 1 ≤ i ≤ dim V .
The condition that f is an immersion at p is

rank (
∂fa

∂vb
) = dim V.

So the singular set Σ ⊂ J1 is,

{(p, c, A) : p ∈ V, c ∈ W, A ∈M(N, dimV ), rank A < dimV }.
That is,

j1p(f) ∈ Σp if and only if f is not an immersion at v.

We have this situation. Start with any f : V → RN . This gives a
subset j1(f)V ⊂ J1.

dimj1(f)V = dimV

so dimV < codimΣ implies can perturb j1(f)V to avoid Σ.
1
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Theorem 2 (Thom Transversality Theorem). Let Σ be a stratified sub-
set of J1(V,W ). The set of maps F : V → W with j1(F ) intersecting
Σ transversally is generic.

So we need to compute the codim of Σ.

Lemma 1. Let M(m,n) be the set of m× n matrices with real coeffi-
cients. The set

(1) Σ = {g ∈M(m,n) | rank g < min(m,n)}
is a stratified subset of M(m,n) of codimension max(m,n)−min(m,n)+
1.

We write
Σ = ∪Σr

To prove this, we start with a single stratum.

Lemma 2. Let r ≤ min(m,n). The set

Σr = {g ∈M(m,n) | rank g = r}
can be defined locally as the zero set of (n − r)(m − r) independent
functions.

To prove Whitney theorem it remains to take

dimV < codimΣ = N − dimV + 1

2 dimV < N + 1

2 dimV ≤ N

�
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Theorem 3 (Whitney 1944). Each smooth map f : V n → R2n−1 may
be approximated by a smooth immersion.

This result is optimal for some dimensions.

Theorem 4. There is no immersion of RPn into R2n−2 when n is of
the form n = 2k.

Proof. We follow section 4 of Milnor Stashof. The proof relies on the
basic properties of the Steifel-Whitney characteristic classes. Given a
real bundle B over a manifold Mn, the Steifel-Whitney class w(B) is
a sum of mod 2 cohomology classes

w(B) = 1 + w1(B) + w2(B) + . . .+ wn(B)

with
wi(B) ∈ H i(M,Z2).

Given two such bundles B1 and B2 over M we have

w(B1 ⊕B2) = w(B1)w(B2)

with the multiplication given by the cup product in the cohomology
ring. The notation w(M) is used for w(TM).

The Steifel-Whitney classes for projective space is given by

w(RPn) = (1 + a)n+1

where a = w1(γ) and γ is the canonical line bundle on RPn.
If we have an immersion

RPn → RN

with normal bundle ν, then TRPn ⊕ ν is a trivial bundle over RPn

and hence
(1 + a)n+1w(ν) = 1.

For n = 2k, most of the binomial coefficients in (1 + a)n+1 are zero,
mod 2. This, together with an+1 = 0, since it belongs to Hn+1(Mn, Z2),
gives

(1 + a)n+1 = 1 + a+ an.

Let
w(ν) = 1 + α1 + . . .+ αN−n.

From
(1 + a+ an)(1 + α1 + . . .+ αN−n) = 1

we see that for some j, 1 ≤ j ≤ N − n, we need to have

aαj = an.

In particular, we need
1 +N − n ≥ n.
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That is,
N ≥ 2n− 1.

So RP2k cannot be immersed into R2k−2. �
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1. Totally Real Immersions M → CN

Recall that the complex vector space CN can be identified with
(R2N , J) where J satisfies J2 = −I. In terms of the usual coordinates
for the real vector space underlying CN

J
∂

∂xk
=

∂

∂yk
, J

∂

∂yk
= − ∂

∂xk
.

We shorten this to J∂xk = ∂yk, etc.

Definition 1. A submanifold M ⊂ CN is totally real if

(2) TM ∩ JTM = {0}.
Note that the dimension of M must be less than or equal to N . The

simplest example is, of course, the standard embedding of RN into CN .
A map

F : M → CN

is a totally real immersion if

(1) F is an immersion and
(2) F∗TM ∩ JF∗TM = {0}.

Since Mn embeds into R2n ⊂ C2n and any submanifold of a totally
real submanifold is itself totally real, we have for free that Mn always
has a totally real embedding into CN provided N ≥ 2n.

Theorem 5. There exists a totally real immersion of Mn into CN

provided N > 3
2
n− 1.

Remark 1. We actually get a totally real embedding.

Let
Σ ⊂ J1(M,CN) = J1(M,R2N)

be defined by the fibers

Σp = {j1p(f)| f : Mn → CN with f∗TMp ∩ Jf∗TMp 6= {0}}.
Any immersion that avoids Σ is a totally real immersion. For this we

show that Σ is a stratified manifold of codimension greater than n. To
start, we give an alternate description of Σp. Choose a local coordinate
system containing p. Let f : Mn → R2N and let A(f) ∈M(2N, n)) be
given by

Aij =
∂f j

∂xi
(p).

Denote by (A, JA) the element of M(2N, 2n) obtained by juxtaposition
of the matrices A and JA. Then f is a totally real immersion at p if
and only if

rank(A, JA) = 2n.
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Σ = {(p, c, A) : rank(A, JA) ≤ 2n}.
The codim of Σ is 2N − 2(n − 1) . The codimension of Σ is greater
than the dimension of M when N > 3n/2− 1.
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2. Complex-valued Functions

Definition 2. A map f : Mn → CN is called an independent map
if

df1(p) ∧ · · · ∧ dfN(p) 6= 0

for f = (f1, . . . , fN) and for all p ∈M .

Theorem 6. Any map f : Mn → CN may be approximated by an
independent map, provided N ≤ [n+1

2
].

Now we prove Theorem ??. It is convenient to use a slightly different
representation of the space J1(M,Cr) of one-jets of maps F : Mn → Cr

by writing a local section j1(F ) as {(p, F (p), dF1(p), . . . , dFr(p))} and
a point of J1(M,Cr) as (p, c, θ1, . . . , θr).

Let Σ be the subset of J1(M,Cr)whose fiber at each point p is given
by {(p, c, θ) : θ1 ∧ . . . ∧ θr|p = 0}.

Lemma 3. Σ is a stratified subset of J1(M,Cr) of codimension 2(n+
1− r).

The codimension of Σ in J1(M,Cr) is greater than the dimension of
Mn provided we require 2(n + 1 − r) > n. It follows from the Thom
Transversality Theorem that any map of M into Cr may be perturbed
to achieve that its one-jet does not intersect Σ.
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3. Optimality

To explain our examples, we find necessary bundle-theoretic condi-
tions for totally real immersions and for independent maps.

Lemma 4. (a) If M has a totally real immersion into CN then
there exists a bundle Q of rank r = N − n such that

(C⊗ TM)⊕Q ∼= Nε.

(b) If M has an independent map into CN then there exists a bundle
B of rank r = n−N such that

C⊗ TM ∼= Nε⊕B.

Here Nε is the product complex vector bundle over M of rank N .

Proof of Lemma 4. (a) The condition TM ∩ JTM = ∅ is equivalent to
the fiber injectivity of

φf : C⊗ TM → T 1,0(CN)

where φf (v) is defined, for v ∈ C⊗ TM , by

φf (v) = f∗(v)− iJf∗(v).

Thus if M has a totally real immersion into CN then

(C⊗ TM)⊕Q ∼= Nε

where Q is the bundle in T 1,0 normal to φf (C⊗ TM).

(b) The map

ψf : C⊗ TM → T 1,0

given by

ψf (v) =
∑

dfj(v)∂zj

is surjective on the fibers. So

C⊗ TM ∼= Nε⊕B.
with B = kerψf . �

3.1. Totally real immersions. We need to find a manifold of di-
mension n that does not have a totally real immersion into CN for
N = [3n

2
] − 1. We provide four families of examples according to the

residue of the dimension of M modulo 4. Let

M4k = CP2 × · · · ×CP2 = (CP2)×k

be the product of k copies of the complex projective plane.

Theorem 7 (with Landweber 2012).
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• M4k does not admit a totally real immersion into CN for N =
6k − 1.
• M4k+1 = M4k×S1 does not admit a totally real immersion into

CN for N = 6k.
• M4k+2 = M4k × RP2 does not admit a totally real immersion

into CN for N = 6k + 2.
• M4k+3 = M4k ×RP2×S1 does not admit a totally real immer-

sion into CN for N = 6k + 3.

Denote the total Chern class of a complex vector bundle B over M
by

c(B) = 1 + c1(B) + · · ·+ ck(B)

where cj(B) ∈ H2j(M ; Z) and k = min(rankB, [dimM
2

]).
We will use

c(E ⊕ F ) = c(E)c(F ).

We have the following well-known result (see e.g. [?, Section 14]).

Lemma 5. Let a denote the first Chern class of the hyperplane line
bundle O(1) on CP2. Then

c(C⊗ TCP2) = 1− 3a2.

We need to show that in the first two cases of Theorem 7 there is no
bundle Q of rank 2k− 1 and in the last two cases no bundle Q of rank
2k such that (C ⊗ TM) ⊕ Q is trivial. We shall show this for M4k+1

and M4k+3. The other two cases, which are very similar to these, are
done in [?]. So first we assume that there is some Q with

(C⊗ TM4k+1)⊕Q ∼= Nε

for some N and show that the rank of Q is at least 2k.
Let a1, . . . , ak be the pull-backs of a to M under the corresponding

projections to CP2, so that a3i = 0 for all i. We have

c(C⊗ TM4k+1) · c(Q) = 1.

Thus c(Q) = (1 + 3a21) · · · (1 + 3a2k). Since a21 · · · a2k 6= 0, this implies
that the rank of Q is at least 2k.

Next we assume that there exists some Q with

(C⊗ TM4k+3)⊕Q = Nε

for some N and show that the rank of Q is at least 2k+1. Let a1, . . . ak
be as before and let b1 be the pull-back of the generator in H2(RP2; Z)
given by the Chern class of the complexification of the tautological line
bundle on RP2. We have

c(C⊗ TM4k+3) · c(Q) = 1
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which now gives

c(Q) = (1 + 3a21) · · · (1 + 3a2k)(1− b1).
This implies that the rank of Q is at least 2k + 1.

3.2. Independent maps. The same manifolds M4k+r (0 ≤ r ≤ 3)
show that Theorem 6 is also optimal.

Theorem 8 (with Landweber).

• M4k does not admit an independent map into CN for N =
2k + 1.
• M4k+1 = M4k × S1 does not admit an independent map into

CN for N = 2k + 2.
• M4k+2 = M4k ×RP2 does not admit an independent map into

CN for N = 2k + 2.
• M4k+3 = M4k ×RP2 × S1 does not admit an independent map

into CN for N = 2k + 3.

The proofs are similar to those of Theorem 7 and can be found in
[?]. For instance, to show that M4k+1 does not admit an independent
map into CN for N = 2k + 2 we start with

C⊗ TM4k+1 ∼= Nε⊕B
for some N which gives us

c(B) = c(C⊗ TM4k+1) = (1− 3a1)
2 · · · (1− 3a2k).

So the rank of B is at least 2k and since N + rankB = 4k + 1, this
leads to N ≤ 2k + 1.
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Remark 2. We provide a summary of the results in this section for a
four-dimensional manifoldM , in terms of the following list of conditions
that the manifold may satisfy:

(1) M admits a totally real immersion into C5.
(2) M admits a totally real immersion into C4.
(3) M admits an independent map into C3.
(4) M admits an independent map into C4.
(5) C⊗ TM is trivial.
(6) The first dual Pontryagin class of M vanishes.
(7) The first Pontryagin class of M vanishes.

Then:

(a) Conditions (2), (4), and (5) are equivalent for all 4-manifolds,
and plainly imply the remaining conditions.

(b) Conditions (1) and (6) are equivalent for all 4-manifolds. The
same holds for Conditions (3) and (7).

(c) Conditions (1), (3), (6), and (7) are all satisfied if M is open.
(d) All seven conditions are equivalent if M is orientable.
(e) By Theorem 4.2, conditions (1) and (3) are not equivalent for

compact non-orientable manifolds; indeed, neither implies the
other.

(f) The conditions (1), (3), (6), and (7) are satisfied by the non-
orientable manifolds RP2×R2 and RP2× S2, but these mani-
folds do not satisfy the conditions (2), (4), and (5), since in both
case the first Chern class of the complexified tangent bundle is
nonzero.

It seems unlikely that such complete results can be obtained for mani-
folds of larger dimension.


