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CR Structures

A CR structure on M3 is a two-plane distribution H ⊂ TM and a
complex structure on each fiber.

J ∶ H → H with J2 = −I .
We denote this structure by (M,H, J).
It is often useful to extend J by complex linearity to a map

J ∶ C⊗H → C⊗H.

Then J is completely determined by the eigenspace corresponding
to the eigenvalue i (or to the eigenvalue -i). So a CR structure is
just as well given by a complex line bundle B ⊂ C⊗H,

B ∩B = {0}.
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It will be useful to work with the dual formulation. Choose some θ
such that θ⊥ = H . Choose some θ1 such that

X ∈ H Ô⇒ θ1(X + iJX ) = 0 and θ1(X − iJX ) ≠ 0.

(θ, θ1) is called a CR coframe. The CR structure is strictly
pseudoconvex if θ ∧ dθ ≠ 0. So θ is a contact form and H is a
contact distribution. A normalized coframe (θ, θ1) satisfies

dθ = iθ1 ∧ θ1.
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(H, J) uniquely defines the CR structure. are not unique.

θ̃ = rθ

θ̃1 = αθ1

with constants r real and α complex, ∣α∣2 = r > 0 is also a
normalized coframe.
A pseudo-hermitian structure is a strictly pseudoconvex (H, J)
and a choice of θ. If (θ, θ1) is a normalized coframe, then the only
other normalized choices are

θ̃ = θ

θ̃1 = λθ1

with ∣λ∣ = 1.
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Given two CR structures (M,H, J) and (M, H̃, J̃) a
diffeomorphism F ∶M →M is a CR diffeomorphism if it preserves
the contact distribution and the J-operator. That is

F∗ ○ J = J̃ ○ F∗.

In terms of choices of coframes we are requiring

F ∗θ̃ = sθ

F ∗θ̃1 = γθ1 + δθ
with s real, γ and δ complex s ≠ 0, and γ ≠ 0.

Howard Jacobowitz Rutgers University Camden January 4, 2016 Left-Invariant CR and Pseudo hermitian Structures on S3



CR and Pseudo-Hermitian Structures
S3 as a group

Given two pseudo-hermitian structures, say {θ, θ1} and {θ, θ̃1} and
a diffeomorphism F ∶M3 →M3, we say that the two
pseudo-hermitian structures are equivalent, and that F is a
pseudo-hermitian diffeomorphism if

F ∗(θ) = θ

and
F ∗(θ̃1) = γθ1 + δθ.

Howard Jacobowitz Rutgers University Camden January 4, 2016 Left-Invariant CR and Pseudo hermitian Structures on S3



CR and Pseudo-Hermitian Structures
S3 as a group

The Standard Structures

The standard CR structure on the three sphere S3 is the one it
inherits as a submanifold of C2.

H = TS3 ∩ JTS3.

H is called the standard contact distribution.
Restricting θ0 = −i(zdz +wdw) to S3 gives the standard
pseudo-hermitian structure.
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The induced CR structure on S3 can be given by

θ0 = −i(zdz +wdw)
θ10 = wdz − zdw

where these forms are restricted to S3.
Note

dθ0 = iθ10 ∧ θ10
dθ10 = θ10 ∧ ω
ω = −2iθ0

dω = 2θ10 ∧ θ10
“ The pseudo-hermitian curvature equals two.”
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The Webster Connection

Theorem

Let (θ, θ1) be a pseudo-hermitian coframe. There exist unique
functions R,A, and V , and an unique one-form ω, so that

dθ = iθ1 ∧ θ1
dθ1 = θ1 ∧ ω +Aθ ∧ θ1
ω = −ω

dω = Rθ1 ∧ θ1 + 2iI(V θ1) ∧ θ.

Further, if θ1 is replaced by θ1 = λθ1, ∣λ∣ = 1, then

R = R, A = λ2A, V = λV , ω = ω − λ−1dλ.
Recall from previous slide that R = 2, A = 0, V = 0 for the
standard pseudo-hermitian structure.
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Cartan structural equations

Let φ and φ1 be one-forms with φ real giving the CR structure:

1 φ⊥ = H,

2 Jφ1 = iφ1,

3 dφ = iφ1φ1.

Theorem

There exist unique one-forms φ2, φ3, φ4 and unique functions RC

and S such that

1 φ2 is imaginary and φ4 is real,

2 dφ1 = −φ1φ2 − φφ3,
3 dφ2 = 2iφ1φ3 + iφ1φ3 − φφ4,
4 dφ3 = −φ1φ4 − φ2φ3 − RCφφ1,

5 dφ4 = iφ3φ3 + (Sφ1 + Sφ1)φ.
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If we replace φ by ψ = ∣ν∣2φ and φ1 by ψ1 = νφ1 with a constant ν
then the forms

ψ2 = φ2, ψ3 = 1

ν
φ3, ψ4 = 1

∣ν∣2φ4

satisfy the equations in the Theorem with R and S replaced by

R = R

∣ν∣2ν2 and S = S

∣ν∣2ν .

R and S are relative invariants.
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We want to choose a multiple of φ and a corresponding multiple of
φ1 so that R(x) ≡ 1.

Corollary

If R(p) ≠ 0, there are precisely two choices of (φ,φ1) such that in
a neighborhood of p

1 (φ,φ1) give the CR structure,

2 dφ = iφ1φ1, and

3 R ≡ 1.

The eight parameter space of choices is cut down to only two
choices.
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If we denote one choice by (ω,ω1), then the other choice is
(ω,−ω1).
We set φ = ω and φ1 = ω1 and apply the theorem to obtain φ2, φ3,
and φ4.

φ′2 = φ2, φ′3 = −φ3, and φ′4 = φ4.
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So the curvature R is a pseudo-hermitian invariant and the torsion
A is a relative invariant. NEED CLARIFY THIS

Howard Jacobowitz Rutgers University Camden January 4, 2016 Left-Invariant CR and Pseudo hermitian Structures on S3



CR and Pseudo-Hermitian Structures
S3 as a group

The group structure

SU(2) = {( α −β
β α

) ∶ ∣α∣2 + ∣β∣2 = 1} ⊂ O(4).

Identify SU(2) with S3. SU(2) acts on S3 on the left.
Facts

Every left-invariant 2-plane distribution is contact.

The standard contact distribution is left-invariant.
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Start by describing all left-invariant CR structures with the
standard contact distribution.

B ⊂ C⊗H ⊂ C⊗TS3.

B = {Z ∈ C⊗TS3 ∣ θ0, (αθ10 + βθ10)Z = 0}.
Assume α ≠ 0, ∣β/α∣ ≠ 1.

B = {θ0, θ10 + µθ10}⊥

satisfies B ∩B = {0}.
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Let θ(µ) = θ10 + µθ10.

Theorem

1 The left-invariant CR structures (θ0, θ1(µ)) and (θ0, θ1(µ′))
are equivalent if and only if either ∣µ∣ = ∣µ′∣ or ∣µ∣ = ∣µ′∣−1.

2 The left-invariant pseudo-hermitian structures (aθ0, θ1(µ))
and (a′θ0, θ1(µ′)) are equivalent if and only if a = a′ and
∣µ∣ = ∣µ′∣.

3 Any left-invariant CR structure of pseudo-hermitian structure
is equivalent to one with the standard contact distribution.

The third statement may be proved by group theory, but analysis
yields more information.
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We need the Webster and Cartan curvatures for (θ0, θ1(µ).

dθ = iθ1 ∧ θ1

dθ1 = θ1 ∧ (−2i (1 + ∣µ∣2
1 − ∣µ∣2)) θ −

4iµ

1 − ∣µ∣2 θ ∧ θ
1.

So

A = − 4iµ

1 − ∣µ∣2
and

R = 2(1 + ∣µ∣2
1 − ∣µ∣2) .

Note that RA ≠ 0 for µ ≠ 0.
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