Left Invariant CR Structures on S^3

Howard Jacobowitz Rutgers University Camden October 22, 2015

- ∢ ≣ ▶

Howard Jacobowitz Rutgers University Camden October 22, 201 Left Invariant CR Structures on S^3

• CR structures on M^3

Howard Jacobowitz Rutgers University Camden October 22, 201 Left Invariant CR Structures on S³

- ● ● ●

- CR structures on M^3
- Pseudo-hermitian structures on M^3
 - Curvature and torsion

Howard Jacobowitz Rutgers University Camden October 22, 201 Left Invariant CR Structures on S^3

▶ ∢ ≣

- CR structures on M^3
- Pseudo-hermitian structures on M^3
 - Curvature and torsion

•
$$S^3 = SU(2)$$

Howard Jacobowitz Rutgers University Camden October 22, 201 Left Invariant CR Structures on S^3

▶ ∢ ≣

- CR structures on M^3
- Pseudo-hermitian structures on M^3
 - Curvature and torsion
- $S^3 = SU(2)$
- Left-invariant CR and pseudo-hermitian structures on S^3
 - Classification results

- CR structures on M³
- Pseudo-hermitian structures on M^3
 - Curvature and torsion
- $S^3 = SU(2)$
- Left-invariant CR and pseudo-hermitian structures on S³
 - Classification results
- Conjugate CR structures

There are many results about pseudo-hermitian structures that are torsion free:

Howard Jacobowitz Rutgers University Camden October 22, 201 Left Invariant CR Structures on S³

There are many results about pseudo-hermitian structures that are torsion free:

1. Isoperimetric inequalities (e.g., Chanillo and Yang, 2009)

Howard Jacobowitz Rutgers University Camden October 22, 201 Left Invariant CR Structures on S^3

There are many results about pseudo-hermitian structures that are torsion free:

- 1. Isoperimetric inequalities (e.g., Chanillo and Yang, 2009)
- 2. Sasakian geometry and physics

There are many results about pseudo-hermitian structures that are torsion free:

- 1. Isoperimetric inequalities (e.g., Chanillo and Yang, 2009)
- 2. Sasakian geometry and physics
- 3. Jingzhi Tie lecture (higher dimension and non-compact)

Motivation

There are many results about pseudo-hermitian structures that are torsion free:

- 1. Isoperimetric inequalities (e.g., Chanillo and Yang, 2009)
- 2. Sasakian geometry and physics

3. Jingzhi Tie lecture (higher dimension and non-compact) Wanted simple examples of pseudo-hermitian structures with torsion. $\begin{array}{c} & \text{Outline} \\ \text{CR and Pseudo-Hermitian Structures} \\ S^3 \text{ as a group} \\ \text{Left-Invariance} \\ \text{Classification} \end{array}$

CR Structures

A **CR structure** on M^3 is a two-plane distribution $H \subset TM$ and a complex structure on each fiber.

CR Structures

A **CR structure** on M^3 is a two-plane distribution $H \subset TM$ and a complex structure on each fiber.

$$J: H \to H$$
 with $J^2 = -I$.

We denote this structure by (M, H, J).

CR Structures

A **CR structure** on M^3 is a two-plane distribution $H \subset TM$ and a complex structure on each fiber.

$$J: H \to H$$
 with $J^2 = -I$.

We denote this structure by (M, H, J). The conjugate CR structure is given by (M, H, -J)

CR Structures

A **CR structure** on M^3 is a two-plane distribution $H \subset TM$ and a complex structure on each fiber.

$$J: H \to H$$
 with $J^2 = -I$.

We denote this structure by (M, H, J). The conjugate CR structure is given by (M, H, -J)It is often useful to extend J by complex linearity to a map

 $J: \mathbf{C} \otimes H \to \mathbf{C} \otimes H.$

CR Structures

A **CR structure** on M^3 is a two-plane distribution $H \subset TM$ and a complex structure on each fiber.

$$J: H \to H$$
 with $J^2 = -I$.

We denote this structure by (M, H, J). The conjugate CR structure is given by (M, H, -J)It is often useful to extend J by complex linearity to a map

 $J: \mathbf{C} \otimes H \to \mathbf{C} \otimes H.$

Then J is completely determined by the eigenspace corresponding to the eigenvalue i (or to the eigenvalue -i).

CR Structures

A **CR structure** on M^3 is a two-plane distribution $H \subset TM$ and a complex structure on each fiber.

$$J: H \to H$$
 with $J^2 = -I$.

We denote this structure by (M, H, J). The conjugate CR structure is given by (M, H, -J)It is often useful to extend J by complex linearity to a map

 $J: \mathbf{C} \otimes H \to \mathbf{C} \otimes H.$

Then *J* is completely determined by the eigenspace corresponding to the eigenvalue *i* (or to the eigenvalue -i). So a CR structure is just as well given by a complex line bundle $B \subset \mathbf{C} \otimes H$,

$$B\cap \overline{B}=\{0\}.$$

It will be useful to work with the dual formulation.

Howard Jacobowitz Rutgers University Camden October 22, 201 Left Invariant CR Structures on S³

э

伺 ト イヨト イヨト

It will be useful to work with the dual formulation. Let $\theta^{\perp} = H$.

Howard Jacobowitz Rutgers University Camden October 22, 201 Left Invariant CR Structures on S³

同 ト イヨ ト イヨ ト

It will be useful to work with the dual formulation. Let $\theta^\perp = H$. Assume

 $\theta \wedge d\theta \neq 0.$

э

伺 ト く ヨ ト く ヨ ト

Howard Jacobowitz Rutgers University Camden October 22, 201 Left Invariant CR Structures on S³

It will be useful to work with the dual formulation. Let $\theta^\perp = H$. Assume

 $\theta \wedge d\theta \neq 0.$

Strict pseudoconvexity

It will be useful to work with the dual formulation. Let $\theta^\perp = H$. Assume

$$\theta \wedge d\theta \neq 0.$$

Strict pseudoconvexity

There exists some θ^1 such that

•
$$d\theta = i\theta^1 \wedge \overline{\theta^1}$$
 (or $d(-\theta) = i\theta^1 \wedge \overline{\theta^1}$)
• $X \in H \implies \theta^1(X + iJX) = 0$. (Equivalently, $J\theta^1 = i\theta^1$)

 (θ, θ^1) is called a CR coframe.

It will be useful to work with the dual formulation. Let $\theta^{\perp} = H$. Assume

$$\theta \wedge d\theta \neq 0.$$

Strict pseudoconvexity

There exists some θ^1 such that

•
$$d\theta = i\theta^1 \wedge \overline{\theta^1}$$
 (or $d(-\theta) = i\theta^1 \wedge \overline{\theta^1}$)

2 $X \in H \implies \theta^1(X + iJX) = 0.$ (Equivalently, $J\theta^1 = i\theta^1$)

 (θ, θ^1) is called a CR coframe. Note that $(\theta, \overline{\theta^1})$ is a CR coframe for the conjugate structure.

 $\begin{array}{c} & \text{Outline} \\ \textbf{CR and Pseudo-Hermitian Structures} \\ S^3 \text{ as a group} \\ \text{Left-Invariance} \\ \text{Classification} \end{array}$

The forms θ and θ^1 are not unique.

э

The forms θ and θ^1 are not unique. For example

$$\begin{array}{rcl} \tilde{\theta} &=& r\theta \\ \tilde{\theta^1} &=& \alpha\theta^1 \end{array}$$

with constants r real and α complex, $|\alpha|^2 = r > 0$.

The forms θ and θ^1 are not unique. For example

with constants *r* real and α complex, $|\alpha|^2 = r > 0$.

A **pseudo-hermitian structure** is a CR coframe (θ, θ^1) with θ fixed.

The forms θ and θ^1 are not unique. For example

with constants r real and α complex, $|\alpha|^2 = r > 0$. A **pseudo-hermitian structure** is a CR coframe (θ, θ^1) with θ fixed. So the only other choices are

with $|\lambda| = 1$.

The forms θ and θ^1 are not unique. For example

$$\vec{\theta} = r\theta \vec{\theta^1} = \alpha\theta^1$$

with constants r real and α complex, $|\alpha|^2 = r > 0$. A **pseudo-hermitian structure** is a CR coframe (θ, θ^1) with θ fixed. So the only other choices are

with $|\lambda| = 1$. Note that always $d\theta = \theta^1 \wedge \overline{\theta^1}$.

 $\begin{array}{c} & \text{Outline} \\ \text{CR and Pseudo-Hermitian Structures} \\ S^3 \text{ as a group} \\ \text{Left-Invariance} \\ \text{Classification} \end{array}$

The Standard Structures

The **standard CR structure** on the three sphere S^3 is the one it inherits as a submanifold of C^2 .

 $H=TS^3\cap JTS^3.$

Howard Jacobowitz Rutgers University Camden October 22, 201 Left Invariant CR Structures on S^3

The Standard Structures

The **standard CR structure** on the three sphere S^3 is the one it inherits as a submanifold of C^2 .

$$H = TS^3 \cap JTS^3.$$

H is called the **standard contact distribution**. Choosing $\theta_0 = -i(\overline{z}dz + \overline{w}dw)$ give the **standard pseudo-hermitian structure**. $\begin{array}{c} & \text{Outline} \\ \text{CR and Pseudo-Hermitian Structures} \\ S^3 \text{ as a group} \\ \text{Left-Invariance} \\ \text{Classification} \end{array}$

The natural choice for a coframe for these structures is

 $\{\theta_0, \theta_0^1\}$

with

$$\theta_0 = -i(\overline{z}dz + \overline{w}dw)$$

$$\theta_0^1 = wdz - zdw$$

- ∢ ≣ ▶

э

where these forms are restricted to S^3 .

Howard Jacobowitz Rutgers University Camden October 22, 201 Left Invariant CR Structures on S³

CR and Pseudo-Hermitian Structures S^3 as a group Left-Invariance Classification

The natural choice for a coframe for these structures is

 $\{\theta_0, \theta_0^1\}$

with

$$\theta_0 = -i(\overline{z}dz + \overline{w}dw)$$

$$\theta_0^1 = wdz - zdw$$

where these forms are restricted to S^3 . Note for later that

$$d\theta_0 = i\theta_0^1 \wedge \overline{\theta_0^1}$$
$$d\theta_0^1 = \theta_0^1 \wedge \omega$$
$$\omega = -2i\theta_0.$$

э

Howard Jacobowitz Rutgers University Camden October 22, 201 Left Invariant CR Structures on S³

Given two CR structures (M, H, J) and $(M, \tilde{H}, \tilde{J})$ a diffeomorphism $F: M \to M$ is a **CR diffeomorphism** if it preserves the two-plane distribution and the *J*-operator. That is

 $F_* \circ J = \tilde{J} \circ F_*.$

▶ ∢ ≣ ▶

Given two CR structures (M, H, J) and $(M, \tilde{H}, \tilde{J})$ a diffeomorphism $F: M \to M$ is a **CR diffeomorphism** if it preserves the two-plane distribution and the *J*-operator. That is

 $F_* \circ J = \tilde{J} \circ F_*.$

In terms of choices of coframes we are requiring

 $F^* \tilde{\theta} = s\theta$ $F^* \tilde{\theta^1} = \gamma \theta^1 + \delta\theta$

with s real, γ and δ complex $s \neq 0$, and $\gamma \neq 0$.

Given two pseudo-hermitian structures, say $\{\theta, \theta^1\}$ and $\{\theta, \tilde{\theta^1}\}$ and a diffeomorphism $F: M^3 \to M^3$, we say that the two pseudo-hermitian structures are equivalent, and that F is a **pseudo-hermitian diffeomorphism** if

Given two pseudo-hermitian structures, say $\{\theta, \theta^1\}$ and $\{\theta, \tilde{\theta^1}\}$ and a diffeomorphism $F: M^3 \to M^3$, we say that the two pseudo-hermitian structures are equivalent, and that F is a **pseudo-hermitian diffeomorphism** if

 $F^*(\theta) = \theta$

and

$$F^*(\tilde{\theta^1}) = \gamma \theta^1 + \delta \theta.$$

→ < ∃→

Howard Jacobowitz Rutgers University Camden October 22, 201 Left Invariant CR Structures on S^3
The Webster Connection

Theorem

Let (θ, θ^1) be a pseudo-hermitian coframe. There exist unique functions R, A, and V, and an unique one-form ω , so that

$$d\theta = i\theta^{1} \wedge \overline{\theta^{1}}$$

$$d\theta^{1} = \theta^{1} \wedge \omega + A\theta \wedge \overline{\theta^{1}}$$

$$\omega = -\overline{\omega}$$

$$d\omega = R\theta^{1} \wedge \overline{\theta^{1}} + 2i\Im(V\overline{\theta^{1}}) \wedge \theta$$

Further, if θ^1 is replaced by $\theta^1 = \lambda \theta^1$, $|\lambda| = 1$, then

$$\mathbf{R} = R, \quad \mathbf{A} = \lambda^2 A, \quad \mathbf{V} = \lambda V, \quad \boldsymbol{\omega} = \boldsymbol{\omega} - \lambda^{-1} d\lambda.$$

 $\begin{array}{c} \text{Outline} \\ \text{CR and Pseudo-Hermitian Structures} \\ S^3 \text{ as a group} \\ \text{Left-Invariance} \\ \text{Classification} \end{array}$

So the curvature R is a pseudo-hermitian invariant and the torsion A is a relative invariant.

The group structure

$$SU(2) = \left\{ \left(\begin{array}{cc} \alpha & -\overline{\beta} \\ \beta & \overline{\alpha} \end{array} \right) : |\alpha|^2 + |\beta|^2 = 1 \right\}.$$

The group structure

$$SU(2) = \left\{ \left(\begin{array}{cc} \alpha & -\overline{\beta} \\ \beta & \overline{\alpha} \end{array} \right) : |\alpha|^2 + |\beta|^2 = 1 \right\}.$$
$$SU(2) \leftrightarrow S^3$$

The group structure

$$SU(2) = \left\{ \begin{pmatrix} \alpha & -\overline{\beta} \\ \beta & \overline{\alpha} \end{pmatrix} : |\alpha|^2 + |\beta|^2 = 1 \right\}.$$
$$SU(2) \leftrightarrow S^3$$
$$\begin{pmatrix} \alpha & -\overline{\beta} \\ \beta & \overline{\alpha} \end{pmatrix} \leftrightarrow (\alpha, \beta) \in C^2$$

э

→ ∢ Ξ

Let $\alpha = a + ib$ and $\beta = c + id$.

Howard Jacobowitz Rutgers University Camden October 22, 201 Left Invariant CR Structures on S³

э

- 🔹 🖻

Let $\alpha = a + ib$ and $\beta = c + id$. Now SU(2) acts on R^4 .

Howard Jacobowitz Rutgers University Camden October 22, 201 Left Invariant CR Structures on S³

- **→** → **→**

-

Let $\alpha = a + ib$ and $\beta = c + id$. Now SU(2) acts on R^4 . Starting with the vectors

 $(0,1,0,0), \ (0,0,1,0), \ \text{and} \ (0,0,0,1)$

tangent to S^3 at (1,0,0,0), we translate them using SU(2) to obtain the vector fields at the point (a, b, c, d)

Let $\alpha = a + ib$ and $\beta = c + id$. Now SU(2) acts on R^4 . Starting with the vectors

 $(0,1,0,0), \ (0,0,1,0), \ \text{and} \ (0,0,0,1)$

tangent to S^3 at (1,0,0,0), we translate them using SU(2) to obtain the vector fields at the point (a, b, c, d)

$$L_1 = (-b, a, -d, c))$$

$$L_2 = (-c, d, a, -b)$$

$$L_3 = (-d, -c, b, a).$$

Contact structures

Howard Jacobowitz Rutgers University Camden October 22, 201 Left Invariant CR Structures on S³

э

Contact structures

Each of the three 2-planes spanned by $\{L_j, L_k\}$ is contact and

 $H=\{L_2,L_3\}$

is the standard contact structure. Thus the standard contact structure in left-invariant.

Contact structures

Each of the three 2-planes spanned by $\{L_j, L_k\}$ is contact and

 $H=\{L_2,L_3\}$

is the standard contact structure. Thus the standard contact structure in left-invariant.

For any other left-invariant distribution we can choose a basis

$$U = L_1 + uL_3$$
$$V = L_2 + vL_3$$

with real constants u and v.

Lemma

Each left-invariant 2-plane distribution on S^3 is a contact structure.

э

- ₹ 🖬 🕨

- ● ● ●

Lemma

Each left-invariant 2-plane distribution on S^3 is a contact structure.

Proof We have

$$\frac{1}{2}[U,V]=uL_1+vL_2-L_3.$$

Lemma

Each left-invariant 2-plane distribution on S^3 is a contact structure.

Proof We have

$$\frac{1}{2}[U,V] = uL_1 + vL_2 - L_3.$$

Assume

[U,V] = xU + yV

- ₹ 🖬 🕨

- ∢ ≣ ▶

Lemma

Each left-invariant 2-plane distribution on S^3 is a contact structure.

Proof We have

$$\frac{1}{2}[U,V]=uL_1+vL_2-L_3.$$

Assume

$$[U,V] = xU + yV$$

Then

$$x = 2u$$
, $y = 2v$, and $xu + yv = -2$

gives the contradiction

Lemma

Each left-invariant 2-plane distribution on S^3 is a contact structure.

Proof We have

$$\frac{1}{2}[U,V]=uL_1+vL_2-L_3.$$

Assume

$$[U,V] = xU + yV$$

Then

$$x = 2u$$
, $y = 2v$, and $xu + yv = -2$

gives the contradiction

$$2u^2 + 2v^2 = -2.$$

Lemma

If \mathcal{D} is a left-invariant 2-plane distribution on S^3 then there is some $\Phi: S^3 \to S^3$ such that the induced map

$$\Phi_*\,TS^3\to\,TS^3$$

takes \mathcal{D} to the standard contact distribution.

Lemma

If \mathcal{D} is a left-invariant 2-plane distribution on S^3 then there is some $\Phi: S^3 \to S^3$ such that the induced map

$$\Phi_* \, TS^3 \to \, TS^3$$

takes \mathcal{D} to the standard contact distribution.

Restrict CR and pseudo-hermitian structures to have the standard distribution.

Left-Invariant Structures

(Almost) any complex structure on H at a given point is given by

Left-Invariant Structures

(Almost) any complex structure on H at a given point is given by

$$\theta^1 = \theta^1_0 + \mu \overline{\theta^1_0}, \quad \mu \neq \pm 1.$$

Left-Invariant Structures

(Almost) any complex structure on H at a given point is given by

$$\theta^1 = \theta^1_0 + \mu \overline{\theta^1_0}, \quad \mu \neq \pm 1.$$

As μ varies we obtain all the CR structures with the given contact distribution, except for the conjugate of the standard CR structure which appears as the limit as $\mu \rightarrow \infty$.

Left-Invariant Structures

(Almost) any complex structure on H at a given point is given by

$$\theta^1 = \theta^1_0 + \mu \overline{\theta^1_0}, \quad \mu \neq \pm 1.$$

As μ varies we obtain all the CR structures with the given contact distribution, except for the conjugate of the standard CR structure which appears as the limit as $\mu \rightarrow \infty$. More generally,

Left-Invariant Structures

(Almost) any complex structure on H at a given point is given by

$$\theta^1 = \theta^1_0 + \mu \overline{\theta^1_0}, \quad \mu \neq \pm 1.$$

As μ varies we obtain all the CR structures with the given contact distribution, except for the conjugate of the standard CR structure which appears as the limit as $\mu \rightarrow \infty$. More generally,

$$\mu$$
 and $\frac{1}{\mu}$ define conjugate CR structures

Left-Invariant Structures

(Almost) any complex structure on H at a given point is given by

$$\theta^1 = \theta^1_0 + \mu \overline{\theta^1_0}, \quad \mu \neq \pm 1.$$

As μ varies we obtain all the CR structures with the given contact distribution, except for the conjugate of the standard CR structure which appears as the limit as $\mu \rightarrow \infty$. More generally,

$$\mu$$
 and $\frac{1}{\mu}$ define conjugate CR structures.

For the pseudo-hermitian coframe

$$\begin{aligned} \theta &= \theta_0 \\ \theta^1 &= \lambda (\theta_0^1 + \mu \overline{\theta_0^1}) \end{aligned}$$

 $|\lambda|^2(1-|\mu|^2) = 1.$

with

we have

$$d\theta^{1} = \theta^{1} \wedge \left(-2i\left(\frac{1+|\mu|^{2}}{1-|\mu|^{2}}\right)\right)\theta - \frac{4i\mu}{1-|\mu|^{2}}\theta \wedge \overline{\theta^{1}}.$$

<ロ> <同> <同> < 同> < 同>

æ

we have

$$d\theta^{1} = \theta^{1} \wedge \left(-2i\left(\frac{1+|\mu|^{2}}{1-|\mu|^{2}}\right)\right)\theta - \frac{4i\mu}{1-|\mu|^{2}}\theta \wedge \overline{\theta^{1}}.$$

Webster connection form

$$\omega = -2i\left(\frac{1+|\mu|^2}{1-|\mu|^2}\right)\theta_0.$$

Torsion

$$A = -\frac{4i\mu}{1-|\mu|^2}$$

Curvature

$$R = 2\left(\frac{1+|\mu|^2}{1-|\mu|^2}\right).$$

э

Let ${\mathcal S}$ denote the set of equivalence classes of left invariant pseudo-hermitian structures corresponding to the standard contact structure.

Let ${\mathcal S}$ denote the set of equivalence classes of left invariant pseudo-hermitian structures corresponding to the standard contact structure.

Remark

The same result and proof hold for $|\mu| > 1$ and θ replaced by $-\theta$.

/⊒ > < ∃ >

Proof Assume $|\mu| = |\mu'|$.

Howard Jacobowitz Rutgers University Camden October 22, 201 Left Invariant CR Structures on S³

э

- ∢ ⊒ →

□→ < □→</p>

Proof Assume $|\mu| = |\mu'|$. Let $F(z, w) = (\zeta z, w) = (\tilde{z}, \tilde{w})$ for $\zeta \in \mathbf{C}$ and $|\zeta| = 1$.

Howard Jacobowitz Rutgers University Camden October 22, 201 Left Invariant CR Structures on S^3

э

伺 ト く ヨ ト く ヨ ト

Proof Assume $|\mu| = |\mu'|$. Let $F(z, w) = (\zeta z, w) = (\tilde{z}, \tilde{w})$ for $\zeta \in \mathbf{C}$ and $|\zeta| = 1$. Then $F^*(\theta|_{(\tilde{z}, \tilde{w})}) = \theta|_{(z,w)}$

and

$$F^*(\tilde{\theta^1}|_{(\tilde{z},\tilde{w})}) = F^*(\tilde{\lambda}(\theta^1_0 + \tilde{\mu}\overline{\theta^1_0}))$$

Howard Jacobowitz Rutgers University Camden October 22, 201 Left Invariant CR Structures on S^3

伺 ト く ヨ ト く ヨ ト

э

Proof
Assume
$$|\mu| = |\mu'|$$
. Let $F(z, w) = (\zeta z, w) = (\tilde{z}, \tilde{w})$ for $\zeta \in \mathbf{C}$ and
 $|\zeta| = 1$. Then
 $F^*(\theta|_{(\tilde{z}, \tilde{w})}) = \theta|_{(z,w)}$

and

$$\begin{aligned} F^*(\tilde{\theta^1}|_{(\tilde{z},\tilde{w})}) &= F^*(\tilde{\lambda}(\theta^1_0 + \tilde{\mu}\overline{\theta^1_0})) \\ &= \tilde{\lambda}(\zeta(wdz - zdw) + \tilde{\mu}\overline{\zeta}(\overline{w}d\overline{z} - \overline{z}d\overline{w})) \end{aligned}$$

(本部) (本語)

э

- ∢ ≣ ▶

Proof
Assume
$$|\mu| = |\mu'|$$
. Let $F(z, w) = (\zeta z, w) = (\tilde{z}, \tilde{w})$ for $\zeta \in \mathbf{C}$ and
 $|\zeta| = 1$. Then
 $F^*(\theta|_{(\tilde{z}, \tilde{w})}) = \theta|_{(z,w)}$

 and

$$F^{*}(\tilde{\theta^{1}}|_{(\tilde{z},\tilde{w})}) = F^{*}(\tilde{\lambda}(\theta^{1}_{0} + \tilde{\mu}\overline{\theta^{1}}_{0}))$$

$$= \tilde{\lambda}(\zeta(wdz - zdw) + \tilde{\mu}\overline{\zeta}(\overline{w}d\overline{z} - \overline{z}d\overline{w}))$$

$$= k\theta^{1}|_{(z,w)}$$

- 4 回 2 - 4 □ 2 - 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □

æ

Proof
Assume
$$|\mu| = |\mu'|$$
. Let $F(z, w) = (\zeta z, w) = (\tilde{z}, \tilde{w})$ for $\zeta \in \mathbf{C}$ and
 $|\zeta| = 1$. Then
 $F^*(\theta|_{(\tilde{z}, \tilde{w})}) = \theta|_{(z,w)}$

and

$$\begin{aligned} F^*(\tilde{\theta^1}|_{(\tilde{z},\tilde{w})}) &= F^*(\tilde{\lambda}(\theta^1_0 + \tilde{\mu}\overline{\theta^1_0})) \\ &= \tilde{\lambda}(\zeta(wdz - zdw) + \tilde{\mu}\overline{\zeta}(\overline{w}d\overline{z} - \overline{z}d\overline{w})) \\ &= k\theta^1|_{(z,w)} \end{aligned}$$

э

- A 🗐 🕨

∰ ▶ ∢ ≣ ▶

Provided we can find some ζ of norm one such that $\tilde{\mu}\overline{\zeta}/\zeta = \mu$.

Proof
Assume
$$|\mu| = |\mu'|$$
. Let $F(z, w) = (\zeta z, w) = (\tilde{z}, \tilde{w})$ for $\zeta \in \mathbf{C}$ and
 $|\zeta| = 1$. Then
 $F^*(\theta|_{(\tilde{z}, \tilde{w})}) = \theta|_{(z,w)}$

and

$$\begin{aligned} F^*(\tilde{\theta^1}|_{(\tilde{z},\tilde{w})}) &= F^*(\tilde{\lambda}(\theta^1_0 + \tilde{\mu}\overline{\theta^1_0})) \\ &= \tilde{\lambda}(\zeta(wdz - zdw) + \tilde{\mu}\overline{\zeta}(\overline{w}d\overline{z} - \overline{z}d\overline{w})) \\ &= k\theta^1|_{(z,w)} \end{aligned}$$

Provided we can find some ζ of norm one such that $\tilde{\mu}\overline{\zeta}/\zeta$ = $\mu.$ That is, provided

$$|\tilde{\mu}| = |\mu|.$$

→ < ∃→
Remark When $\mu = \tilde{\mu}$, we can take $\zeta = \pm 1$ and we have two CR diffeomorphisms leaving (0,1) fixed.

→ < ∃→

Remark When $\mu = \tilde{\mu}$, we can take $\zeta = \pm 1$ and we have two CR diffeomorphisms leaving (0,1) fixed. This illustrates a general theorem:

Remark When $\mu = \tilde{\mu}$, we can take $\zeta = \pm 1$ and we have two CR diffeomorphisms leaving (0,1) fixed. This illustrates a general theorem: A spc CR structure on M^3 with nonzero "CR curvature" admits at most two CR diffeomorphisms leaving a given point fixed. **Remark** When $\mu = \tilde{\mu}$, we can take $\zeta = \pm 1$ and we have two CR diffeomorphisms leaving (0,1) fixed. This illustrates a general theorem: A spc CR structure on M^3 with nonzero "CR curvature" admits at most two CR diffeomorphisms leaving a given point fixed. If $\mu = 0$ the dimension of the isotropy group of a point is 5.

Conversely, we start with a pseudo-hermitian diffeomorphism F and show that $|\mu|$ = $|\tilde{\mu}|.$

э

Conversely, we start with a pseudo-hermitian diffeomorphism *F* and show that $|\mu| = |\tilde{\mu}|$. We use

$$\begin{array}{lll} d\theta^1 & = & \theta^1 \wedge \omega + A\theta \wedge \overline{\theta^1} \\ d\tilde{\theta^1} & = & \tilde{\theta^1} \wedge \tilde{\omega} + \tilde{A}\theta \wedge \overline{\tilde{\theta^1}} \end{array}$$

together with $F^*(\tilde{\theta^1}) = \alpha \theta^1$ to derive

Conversely, we start with a pseudo-hermitian diffeomorphism *F* and show that $|\mu| = |\tilde{\mu}|$. We use

$$\begin{array}{rcl} d\theta^1 & = & \theta^1 \wedge \omega + A\theta \wedge \overline{\theta^1} \\ d\tilde{\theta^1} & = & \tilde{\theta^1} \wedge \tilde{\omega} + \tilde{A}\theta \wedge \overline{\tilde{\theta^1}} \end{array}$$

together with $F^*(\tilde{\theta^1}) = \alpha \theta^1$ to derive

$$(\boldsymbol{d}\alpha) \wedge \theta^{1} + \alpha(\theta^{1} \wedge \omega + \boldsymbol{A}\theta \wedge \overline{\theta^{1}}) = \alpha\theta^{1} \wedge \tilde{\omega} + \overline{\alpha}\tilde{\boldsymbol{A}}\theta \wedge \overline{\theta^{1}}.$$

Conversely, we start with a pseudo-hermitian diffeomorphism *F* and show that $|\mu| = |\tilde{\mu}|$. We use

$$\begin{array}{lll} d\theta^1 & = & \theta^1 \wedge \omega + A\theta \wedge \overline{\theta^1} \\ d\tilde{\theta^1} & = & \tilde{\theta^1} \wedge \tilde{\omega} + \tilde{A}\theta \wedge \overline{\tilde{\theta^1}} \end{array}$$

together with $F^*(\tilde{\theta^1}) = \alpha \theta^1$ to derive

$$(d\alpha) \wedge \theta^1 + \alpha(\theta^1 \wedge \omega + A\theta \wedge \overline{\theta^1}) = \alpha \theta^1 \wedge \tilde{\omega} + \overline{\alpha} \tilde{A}\theta \wedge \overline{\theta^1}.$$

Wedge this with θ^1 and obtain

$$\alpha A = \overline{\alpha} \widetilde{A}.$$

Conversely, we start with a pseudo-hermitian diffeomorphism *F* and show that $|\mu| = |\tilde{\mu}|$. We use

$$\begin{array}{rcl} d\theta^1 & = & \theta^1 \wedge \omega + A\theta \wedge \overline{\theta^1} \\ d\tilde{\theta^1} & = & \tilde{\theta^1} \wedge \tilde{\omega} + \tilde{A}\theta \wedge \overline{\tilde{\theta^1}} \end{array}$$

together with $F^*(\tilde{\theta^1}) = \alpha \theta^1$ to derive

$$(\boldsymbol{d}\alpha) \wedge \theta^{1} + \alpha(\theta^{1} \wedge \omega + \boldsymbol{A}\theta \wedge \overline{\theta^{1}}) = \alpha\theta^{1} \wedge \tilde{\omega} + \overline{\alpha}\tilde{\boldsymbol{A}}\theta \wedge \overline{\theta^{1}}.$$

Wedge this with θ^1 and obtain

$$\alpha A = \overline{\alpha} \widetilde{A}.$$

Use

$$A = -\frac{4i\mu}{1-|\mu|^2}$$

to conclude that $|\mu| = |\tilde{\mu}|$.

CR structural equations

Let ϕ and ϕ_1 be one-forms with ϕ real giving the CR structure:

CR structural equations

Let ϕ and ϕ_1 be one-forms with ϕ real giving the CR structure:

- $\Phi^{\perp} = H,$
- $I\phi_1 = i\phi_1,$
- $d\phi = i\phi_1\overline{\phi_1}.$

▶ ∢ ≣

CR structural equations

Let ϕ and ϕ_1 be one-forms with ϕ real giving the CR structure:

- $\Phi^{\perp} = H,$
- $I\phi_1 = i\phi_1,$
- $d\phi = i\phi_1\overline{\phi_1}.$

Theorem

There exist unique one-forms ϕ_2 , ϕ_3 , ϕ_4 and unique functions R(x) and S(x) such that

1 ϕ_2 is imaginary and ϕ_4 is real,

2
$$d\phi_1 = -\phi_1\phi_2 - \phi\phi_3$$
,

$$d\phi_2 = 2i\phi_1\overline{\phi_3} + i\overline{\phi_1}\phi_3 - \phi\phi_4$$

$$d\phi_3 = -\phi_1\phi_4 - \overline{\phi_2}\phi_3 - R\phi\overline{\phi_1},$$

$$d\phi_4 = i\phi_3\overline{\phi_3} + (S\phi_1 + \overline{S\phi_1})\phi$$

If we replace ϕ by ψ = $|\nu|^2 \phi$ and ϕ_1 by ψ_1 = $\nu \phi_1$ with a constant ν

→ < ∃→

- ∢ ⊒ →

If we replace ϕ by ψ = $|\nu|^2\phi$ and ϕ_1 by ψ_1 = $\nu\phi_1$ with a constant ν then the forms

$$\psi_2 = \phi_2, \quad \psi_3 = \frac{1}{\nu}\phi_3, \quad \psi_4 = \frac{1}{|\nu|^2}\phi_4$$

satisfy the equations in the Theorem with R and S replaced by

$$R = \frac{R}{|\nu|^2 \overline{\nu}^2}$$
 and $S = \frac{S}{|\nu|^2 \nu}$.

ゆ ト イヨ ト イヨト

If we replace ϕ by ψ = $|\nu|^2\phi$ and ϕ_1 by ψ_1 = $\nu\phi_1$ with a constant ν then the forms

$$\psi_2 = \phi_2, \quad \psi_3 = \frac{1}{\overline{\nu}}\phi_3, \quad \psi_4 = \frac{1}{|\nu|^2}\phi_4$$

satisfy the equations in the Theorem with R and S replaced by

$$R = \frac{R}{|\nu|^2 \overline{\nu}^2}$$
 and $S = \frac{S}{|\nu|^2 \nu}$.

R and S are relative invariants.

$R(p) \neq 0$ implies that (M, H, J) is nonumbilic at p.

Corollary

A left invariant CR structure on S^3 with $\mu \neq 0$ has no umbilic points.

We want to choose a multiple of ϕ and a corresponding multiple of ϕ_1 so that $R(x) \equiv 1$.

We want to choose a multiple of ϕ and a corresponding multiple of ϕ_1 so that $R(x) \equiv 1$.

Corollary

If $R(p) \neq 0$, there are precisely two choices of (ϕ, ϕ_1) such that in a neighborhood of p

• (ϕ, ϕ_1) give the CR structure,

2)
$$d\phi = i\phi_1\overline{\phi_1}$$
, and

We want to choose a multiple of ϕ and a corresponding multiple of ϕ_1 so that $R(x) \equiv 1$.

Corollary

If $R(p) \neq 0$, there are precisely two choices of (ϕ, ϕ_1) such that in a neighborhood of p

$${f 0}~(\phi,\phi_1)$$
 give the CR structure,

2)
$$d\phi = i\phi_1\overline{\phi_1}$$
, and

$$\bigcirc R \equiv 1.$$

If we denote one choice by (ω, ω_1) , then the other choice is $(\omega, -\omega_1)$.

We want to choose a multiple of ϕ and a corresponding multiple of ϕ_1 so that $R(x) \equiv 1$.

Corollary

If $R(p) \neq 0$, there are precisely two choices of (ϕ, ϕ_1) such that in a neighborhood of p

$${f 0}\,\,(\phi,\phi_1)$$
 give the CR structure,

2)
$$d\phi = i\phi_1\overline{\phi_1}$$
, and

$$\bigcirc R \equiv 1.$$

If we denote one choice by (ω, ω_1) , then the other choice is $(\omega, -\omega_1)$. We set $\phi = \omega$ and $\phi_1 = \omega_1$ and apply the theorem to obtain ϕ_2 , ϕ_3 , and ϕ_4 .

伺 ト く ヨ ト く ヨ ト

We want to choose a multiple of ϕ and a corresponding multiple of ϕ_1 so that $R(x) \equiv 1$.

Corollary

If $R(p) \neq 0$, there are precisely two choices of (ϕ, ϕ_1) such that in a neighborhood of p

$${f 0}\,\,(\phi,\phi_1)$$
 give the CR structure,

2)
$$d\phi = i\phi_1\overline{\phi_1}$$
, and

$$R \equiv 1.$$

If we denote one choice by (ω, ω_1) , then the other choice is $(\omega, -\omega_1)$. We set $\phi = \omega$ and $\phi_1 = \omega_1$ and apply the theorem to obtain ϕ_2 , ϕ_3 , and ϕ_4 . If instead we had set $\phi' = \omega$ and $\phi'_1 = -\omega_1$, we would have obtained

$$\phi_2' = \phi_2, \quad \phi_3' = -\phi_3, \text{ and } \phi_4' = \phi_4.$$

Theorem

If F is a CR diffeomorphism between left-invariant CR structures characterized by μ and $\tilde{\mu}$ and with the standard contact distribution then either $|\mu| = |\tilde{\mu}|$ or $|\mu| = 1/|\tilde{\mu}|$.