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1. INTRODUCTION

A classical theorem of Siegel [Sieb5] says that the dimension of global holomorphic sec-
tions of the k™ tensor power E* of a holomorphic line bundle E over a compact complex
manifold X of dimension n grows at a rate of at most k™ as k tends to infinity. This
theorem has important implications in complex algebraic geometry. For example, Siegel
proved that, as a consequence, the algebraic degree of X (i.e., the transcendence degree of
the field of meromorphic functions on X) is less than or equal to n. (We refer the reader
to [And73] for an exposition for relevant results.)

The classical Morse inequalities on compact Riemannian manifolds, relating the Betti
numbers to the Morse indices, showcase interplays among analysis, geometry, and topology
(e.g., [Mil63]). In an influential paper [W82], Witten provided an analytic approach to
the Morse inequalities. Instead of studying the deRham complex directly, Witten used the
twisted deRham complex d;y = et detf where d is the exterior differential operator and f
the Morse function. The Morse inequalities then follows from spectral analysis of the twisted
Laplace-Beltrami operator by letting ¢ — oco. (See, for example, [HS85, Bis86, Z01, HNO05]
and references therein for detailed expositions of Witten’s approach.)
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Asymptotic Morse inequalities for compact complex manifolds were established by De-
mailly ([De85]; see also [De89]). Demailly’s Morse inequalities were inspired in part by Siu’s
solution [Siu85] to the Grauert-Riemenschneider conjecture [GR70] which states that a com-
pact complex manifold with a semi-positive holomorphic line bundle that is positive on a
dense subset is necessarily Moishezon (i.e., its algebraic degree is the same as the dimension
of the manifold). It is noteworthy that whereas the underpinning of Witten’s approach is
a semi-classical analysis of Schrodinger operators without magnetic fields, Demailly’s holo-
morphic Morse inequality is connected to Schrédinger operators with strong magnetic fields.
(Interestingly, a related phenomenon also occurs in compactness in the d-Neumann prob-
lem for Hartogs domains in C? (see [FS02, CF05]): Whereas Catlin’s property (P) can
be phrased in terms of semi-classical limits of non-magnetic Schrédinger operators, com-
pactness of the O-Neumann operator reduces to Schrodinger operators with degenerated
magnetic fields.) More recently, Berman established a local version of holomorphic Morse
inequalities on compact complex manifolds [Ber04] and generalized Demailly’s holomorphic
Morse inequalities to complex manifolds with non-degenerated boundaries [Ber05].

Here we study spectral behavior of the complex Laplacian for a relatively compact domain
in a complex manifold whose boundary has a degenerated Levi form. In particular, we are
interested in Siegel type estimates for such a domain. Let 2 CC X be a domain with
smooth boundary in a complex manifold of dimension n. Let E be a holomorphic line
bundle over € that extends smoothly to 2. Let h?(2, E') be the dimension of the Dolbeault
cohomology group on € for (0,¢)-forms with values in E. Let h9(Q, E) be the dimension
of the corresponding L2-cohomology group for the d-operator (see Section 2 for the precise
definitions). It was proved by Hormander that when b satisfies conditions a, and ag41®,
then these two cohomology groups are isomorphic. Furthermore, there exists a defining
function r of £ and a constant ¢y, independent of E, such that these cohomology groups
are isomorphic to their counterparts on Q. = {z € Q | r(2) < —¢} for all ¢ € (0,¢p). Our
first result is an observation that combining Hérmander’s theorems [H65] with a theorem
of Diederich and Fornaess [DF77] yields the following:

Theorem 1.1. Let Q be pseudoconver. Assume that there exists a neighborhood U of
b2 and a bounded continuous function whose complex hessian is bounded from below by a
positive constant on U N Q. Then hi(Q, E) = %Q(Q,E) for all 1 < q < n. Furthermore,
there exists a defining function of @ and a constant co > 0, independent of E, such that
b, is strictly pseudoconver and hi(Q, E) = h1(Q., E) for all ¢ € (0, cp).

It is well known that a smooth pseudoconvex domain of finite type in a complex surface
satisfies the assumption in the above theorem ([Ca89, FoS89]; see Section 3). Together with
Berman’s result, one then obtains a holomorphic Morse inequality for such pseudoconvex
domains. In particular, h¢(Q, E¥) < Ck", 1 < q < n, for some constant C' > 0. For
pseudoconcave domains, we have

Theorem 1.2. Assume that § is pseudoconcave and bS) does not contain the germ of any
complex hypersurface. Then h?(Q, EF) < Ck™ for some constant C > 0.

Notice that the above theorems show that h?(£2, E¥) is insensitive to the order of degen-
eracy of the Levi form of the boundary. This is related to the fact that the dimensions of
cohomology groups (equivalently, the multiplicity of the zero eigenvalues of the 9-Neumann

1Recall that the boundary b2 satisfies condition a4 if the Levi form of its defining function has either at
least ¢ + 1 negative eigenvalues or at least n — ¢ positive eigenvalues at every boundary point
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Laplacian) alone, even though can determine pseudoconvexity (see [Fu05] for a discussion
on related results), are not sufficient to detect other geometric features, such as the finite
type conditions, of the boundary. For this, we need to consider higher eigenvalues. Let
Ni()\) be the number of eigenvalues that are less than or equal to A of the d-Neumann
Laplacian on 2 for (0,1)-forms with values in E*. The following is the main theorem of
the paper:

Theorem 1.3. Let Q CC X be pseudoconver domain with smooth boundary in a complex
surface X. Let E be a holomorphic line bundle over Q) that extends smoothly to bS). Then
for any C > 0, Ni(Ck) has at most polynomial growth as k — oo if and only if bQ is of

finite type.

The proof of the above theorem is a modification of the arguments in [Fu05b]; we need
only to establish here that effects of the curvatures of the metrics on the complex surface
X and the line bundle E* are negligible.

Our paper is organized as follows. In Section 2, we review definitions and notations, and
provide necessary backgrounds. we prove Theorem 1.1 in Section 3 and Theorem 1.2 in
Section 4. The rest of the paper is devoted to the proof of Theorem 1.3. For the reader’s
convenience, we have made an effort to have the paper self-contained. This results in
including previously known arguments in the paper.

2. PRELIMINARIES

2.1. The 9-Neumann Laplacian. We first review the well-known setup for the 9-Neumann
Laplacian on complex manifolds. (We refer the reader to [H65, FoK72, CS99] for extensive
treatises of the 9-Neumann problem and to [De] for L2-theory of the d-operator on complex
manifolds.) Let X be a complex manifold of dimension n. Let E be a holomorphic vector
bundle of rank r over X. Let

Coo(X,E) = C®(X,A"T*X ® E), Cu.(X,E) =ap_Coo(X, E).

Let 0: E|yy — U x C" be a local holomorphic trivialization of E over U. Let ¢j, 1 < j <,
be the standard basis for C" and let e; = 61 (x, €j), 1 <j <r, be the corresponding local
holomorphic frame of E|y. For any s € Cg5 (U, E), we make the identification

-
s:Zsj(X)ej ~9 (81,.-.,8),
j=1

where s; € C5(U,C), 1 < j < r. Then the canonical (0,1)-connection is by definition
given by

0¢5 ~9 (0451, ...,045,) € CB’ZH(M, E),
where d, is the projection of the exterior differential operator onto C*°(X, A%4T*X).

Now assume that X is equipped with a hermitian metric h, given in local holomorphic
coordinates (z1,...,2,) by

n
h = Z hjrdz; @ dzy,
jk=1
where (hjy) is a positive hermitian matrix. Let Q2 be a domain in X. Let £ be a holomorphic
vector bundle over ) that extends smoothly to 2. Assume that E is equipped with a
smoothly varying hermitian fiber metric g, given in a local holomorphic frame {ey,..., e}
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by gjx = (e, ex). For u,v € C§°(X, E), let (u,v) be the point-wise inner product of u and
v, and let

{{u,v))q :/Q<u,v>dV

be the inner product of u and v over . Let Laq(Q, E) be the completion of the restriction
of C§% (X, E) to Q with respect to the inner product ((-,-))q. We also use 9, to denote
the closure of 9, on Laq(Q,E). Thus 5}: Laq(Q, E) — L(2),q+1(Q’E) is a densely defined,
closed operator on Hilbert spaces. Let 8; be its Hilbert space adjoint.
Let
Qf 4 (uv) = ((Dqu, Do) + ((9,—1u, Dg_10))e
be the sesquilinear form on Lg’q(Q, FE) with domain D (Qg’q) =D (9,)ND (5;,1). Then Qg’q
is densely defined and closed. It then follows from general operator theory (see [Dav95])
that Qg’q uniquely determines a densely defined self-adjoint operator Dg,q: Lg,q(Q, E) —

Lg’q(Q, E) such that
Q8 q(u,v) = {(u, 05 v)),  for u e D(QF,),v € D(Og,),

and D ((ng)lﬂ) =D (ng) This operator ngq is called the 0-Neumann Laplacian on
La (8%, E). It is an elliptic operator with non-coercive boundary conditions. It follows from
the work of Kohn [Ko063, Ko64, Ko72] and Catlin [Ca83, Ca87] that it is subelliptic when

Q) is a relatively compact and smoothly bounded pseudoconvex domain of finite type in the
sense of D’Angelo [D82, D93]: There exists an ¢ € (0,1/2] such that

lull2 < C(QG 4 (u, u) + [[ul®)
for all u € D (ng), where || - || denotes the L2-Sobolev norm of order € on ).
2.2. The Dolbeault and L?-cohomology groups. The Dolbeault and the L?-cohomology
groups on {2 with values in F are given respectively by
€CE(QE)|0yf =0
o (0,8) = 1 € OBl E) | 30f =)
{9g-19 | 9 € 51 (Q, E)}

and _
{f € L5 (2 E) | 0,f = 0}

{9,191 9 € D(94-1)}
It follows from general operator theory that Ho 4(2, E) is isomorphic to N/ (Dg q), the null

Ho,(Q, E) =

space of Dg’q, when 0,1 has closed range. Furthermore, ffo,q(Q, E) is finite dimensional
when ngq has compact resolvent, in particular, when it is subelliptic. It was shown by
Hormander [H65] that when b2 satisfies conditions a, and aq41, the L?-cohomology group
.F~I07q(Q, E) is isomorphic to the Dolbeault cohomology group Hy (2, E).

2.3. The spectral kernel. Assume that Dg o has compact resolvent. Let {)\;1-; j=12,...}
be its eigenvalues, arranged in increasing order and repeated according to multiplicity. Let
30;1- be the corresponding normalized eigenforms. The spectral resolution Eg q()\) : L(%, q (QFE)—
L§ (0, E) of OO is given by

BE,(Nu= 3 {(u, o)) ¢l
A <A



Let equ()\; z,w) be the spectral kernel, i.e., the Schwarz kernel of Egﬂ()\). Then

trqu)\zz Z|g0]
A <A

Let
56.q(X; 2) = sup{|e(2)]* | ¢ € Ef ((\(LF 42 B)), [l = 1}
It is easy to see that

n!

2.1 SE (N 2) <tref (X <
( ) Q,q( ,Z) > ur eQ,q( ,Z,Z) = q!(n_q)!

qu()\;z).
(see, e.g., Lemma 2.1 in [Ber04].)

3. ISOMORPHISM BETWEEN THE DOLBEAULT AND L? COHOMOLOGY GROUPS

The following proposition is a simple variation of a result due to Diederich and Fornaess
[DF77]. We provide a proof, following Sibony ([Sib87, Sib89]), for completeness.

Proposition 3.1. Let Q CC X be pseudoconvex with smooth boundary. Assume that there
exists a neighborhood U of bS) and a bounded continuous function whose complex hessian
is bounded below by a positive constant. Then there exists an n € (0,1), a smooth defining
function 7 of 2, and a constant C' > 0 such that p = —(—7)" satisfies

(3.1) Ly(2,€) = 90p(&,€) = Clp(2)|[¢]

forall z€ QNU and € € T} (X).

Proof. Let r be a defining function of 2. Let V' CC U be a tubular neighborhood of b{2
such that the projection from z € V onto the closest point 7(z) € b2 is well-defined and
smooth. Shrinking V' if necessary, we may assume that both z and 7(z) are contained in the

same coordinate patch. By decomposing ¢ € T ! ’O(X ) into complex tangential and normal
components, we then obtain that

(3.2) Ly (2,6) > =Ci(Ir(2)lI€P + [€]l(0r(2),6)])

for some constant C7 > 0.

Write p(2) = @(r(z))ef?) where ¢ is a smooth function on (—oc,0) and f(z) on U. Then
it follows from direct calculations that
(3.3)

Ly(z,€) = ¢ (@’Lr(z, €) +@"[(0r, ) + oLy (2,€) + @(0f. ) + 29" Re (0r, €) (D, §>> :
Let p(t) = —(—t)". Let A > 0 be a constant to be determined. Using the inequalities

ITI

20¢ll(0r,€)| < = 1P + lor 6P
and y
2o, 0781 < 07O + 5Ll0n 6P,
we then obtain from (3.2) and (3.3) that
C
Lp(2,6) > ol (~ Crln + SA)IEP + " |2<1 n— 5 — S0P
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By Richberg’s theorem, we may assume that there exists a bounded g € C*(U N Q)
such that Ly(z,&) > Cl¢|? for some C' > 0. By rescaling g, we may further assume that
—2<g<—1. Let f=—e9. ThenonV,

(35)  —Ly(2,6) = (L+A)[Of, ) = e/(Lg(2,€) + (1 — (1 + A)e?)[(dg, &) ).

Now choosing A and then 7 sufficiently small, we then obtain (3.1) on VN Q. We extend p
to a strictly plurisubharmonic function on U N Q by letting p(z) = 0(p) + dx(2)g(z) where
6 is a smooth convex increasing function such that 6(t) = ¢ for |¢| < ¢ and is constant when
t < —2¢ for sufficiently small € > 0, x(2) € C°(Q2) is identically 1 on a neighborhood of
Q\ V, and ¢ is sufficiently small. The desirable defining function is obtained by letting

F=—(—p)/n. O

Let ¢o > 0 be any sufficiently small constant such that {p = —¢} € U N Q (following
the notations of Proposition 3.1). Theorem 1.1 is then a consequence of the combination
of the above proposition and the results in Chapter IIT in [H65]2. More specifically, that

hi(, E) = hi(Qe, E), 1 < ¢ < n, for any ¢ € (0, ¢o) follows from Theorem 3.4.9 in [H65).
The proof of h4 (QE) = ch(QC,E) also follows along the line of the proof of Theorem
3.4.9. We provide details as follows: Since 2. is strictly pseudoconvex, ffqu(Qc, E) is finite
dimensional. To prove that the restriction map ﬁo,q(Q, E)— ﬁqu (Qe, E) is onto, one needs
only to show that the restriction of the nullspace N (9,, Q) to Q. is dense in N (9, Q). Let
{cj};?‘;l be an decreasing sequence of positive numbers approaching 0 with ¢; = ¢. Let
[ =fi € NOyQ,) and let € > 0. By applying Theorem 3.4.7 in [H65] inductively, we
obtain f; € N'(dg,€;) such that

13
1f5 = fivrlle., < i

It follows that there exists some g € N(9y, ) such that for any k, ||f; — 9lle,, — 0 as
j — o0, and || f — glla. < €. Hence the restriction map is surjective.

To prove the injectivity of the restriction map, it suffices to prove that for any f €
L%’q(Q,E) such that d,f = 0 on €2 and f :?q_lu on {2, for some u € Laq(Qc,E), there
exists a form v € Lqu_l(Q, E) such that f = d4—1v on 2. By Theorem 3.4.6 in [H65], there
exists 01 € L§, 1 (Qe,, E) such that f = 4101 on Q,. Since d4_1(u — 01) = 0 on €, , by
Theorem 3.4.7 in [H65], there exists 01 € Laq_l(ch, E) such that 9,-191 = 0 on Q, and
lu—01 — 131||52)C1 < 1/2. Let v; = 01 + ;. Continuing this procedure inductively, we then
obtain v; € Laqfl(QcHl,E) such that f = dg—1v; on Qc,,, and

1

lj = vjsillec,,, < 55

It then follows that there exists v € Lg’q(Q, E) such that for any k, [[v; —vllq,, — 0. Hence
f=0,-1v on Q.

Remark. Recall that a domain @ CC X is said to satisfies property (P) in the sense
of Catlin [Ca84b] if for any M > 0, there exists a neighborhood U of b2 and a function
feC>®(QnU) such that |f| <1 and

Li(2,6) > MIE?

2Althoug;h the results in [H65] is stated for only forms with values in the trivial line bundle, it is obvious
that they also hold for forms with values in any holomorphic line bundle.



for all z € QNU and ¢ € THY(X).

It is well-known that any relatively compact smoothly bounded pseudoconvex domain
with finite type boundary in a complex surface satisfies property (P)(see Catlin [Ca89] and
Fornaess-Sibony [FoS89]%). Hence Theorem 1.1 applies to these domains.

4. PSEUDOCONCAVITY AND THE ASYMPTOTIC ESTIMATES
Let Q CC X be a smoothly bounded domain in a complex manifold X of dimension n.

Definition 4.1. A point ¢ € b2 is an Andreotti pseudoconcave point if there exists a
fundamental system of neighborhoods {U} such that ¢ is an interior point of each of the
sets
UNnQ)u ={peUl[f(p) < sup |f(2),VfeOWU)}
zeUNQ
A domain 2 is Andreotti pseudoconcave if each of its boundary points is.

Note that this definition does not depend on the choice of the fundamental system of
neighborhoods.
We list some well known properties of Andreotti pseudoconcavity.

(1) There are no relatively compact pseudoconcave domains in C".

(2) If the Levi form of b2 has at each ¢ € b2 at least one negative eigenvalue, then Q
is (strictly) pseudoconcave.

(3) If X has a relatively compact pseudoconcave subdomain, then O(X) = C.

(4) Each complex submanifold of CP™ has a pseudoconcave neighborhood.

Recall that a real hypersurface M in X is minimal (in the sense of Trepreau) at a point
q if there does not exist the germ of complex hypersurface passing through g and contained
in M. We say an open set is minimal at a boundary point if the boundary is minimal at
that point.

Theorem 4.1. Let q € b§2. If the Levi form has no positive eigenvalues in a neighborhood
of ¢ and € is minimal at q, then q is an Andreotti pseudoconcave point.

Theorem 4.2. If Q is Andreotti pseudoconcave and relatively compact and if E is a holo-
morphic line bundle over ), then there is some constant depending only on € and E such
that

ho(Q, E¥) < Ck",

where as before h°(Q, E*) is the dimension of the space of global holomorphic sections over
Q with values in E*.

The first theorem will follow directly from some well-known results. When b( is real
analytic, this theorem is essentially contained in [BFe78]. The second theorem is due to
Siegel [Sieb5] and Andreotti [And63] and [And73]. We sketch the proof from [And63],
simplified to apply to manifolds rather than spaces.

We state Trepreau’s Theorem [Tre86]

3Both papers stated their results for domains in C2. The construction of Fornaess and Sibony can be
easily seen to work on complex manifolds as well. Catlin [Ca87] also constructed plurisubharmonic function
with large complex hessian near the boundary for a smooth bounded pseudoconvex domain of finite type in
C™. As a consequence, such domains satisfy property (P). His construction should also work for domains
in complex manifolds as well.
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Theorem 4.3. If bS) is minimal at the point q then there exist a fundamental system of
neighborhoods {V'} of ¢ and an open set S lying on one side of bQ2, with bS N b2 an open
neighborhood of q in b§2, such that

oWV)—-0(lVnSs)
1S surjective.

To prove Theorem 4.1, we first show that the set S from Trepreau’s theorem lies in ).
To see this, note that as long as € is small enough, bQ N B(q,€) is Levi pseudoconvex, as
part of the boundary of Q¢ N B(q,€) and so Q° N B(q, €) is pseudoconvex and therefore a
domain of holomorphy. Thus for no neighborhood V of ¢ is the map

O(V) — OV N Q)

surjective. So S C € and Trepreau’s theorem asserts that each holomorphic function on
V' N Q, for V in the fundamental family of neighborhoods , extends holomorphically to V.
It then follows that

sup [f| = sup |f|
v vNQ

and so ¢ is a pseudoconcave point. We thus conclude the proof of Theorem 4.1.

Let Q@ CC X. We assume that € is Andreotti pseudoconcave . We may extend the
relevant transition functions of the bundle F holomorphically across the boundary of 2
and so there is no loss of generality in assuming that E is a holomorphic line bundle over
an open neighborhood of Q.

The following lemma (see [Sie55]) is fundamental to the arguments.

Lemma 4.4. There exist a finite number of points x4 € 2, a = 1...N and an integer h
such that the only section of E which vanishes to at least order h at each x, is the zero
section. Further, there exists a constant C' depending only on a fized covering of ) so that
h can be chosen to be any integer greater than C'ln g, where g depends only on bounds for
the transition functions for E.

Proof. Let

P.={ze€C"| |zm|<r, 1<m<n}
be a polydisc. There exist finite open coverings, {Q, & = 1,..., K} and {W,, a =
1,..., N}, of Q with the following properties.

(1) Each € is diffeomorphic to the unit ball in C™ and biholomorphic to a domain of
holomorphy in C™. Note that any holomorphic line bundle over €2 is holomorphi-
cally trivial.

(2) There is some real number rg, 0 < 19 < 1 such that for each a there exists a
biholomorphism ¢, defined on an open neighborhood of W, taking W, — P,,. It

follows that there is some real number r1, not depending on a and with rq < ry < 1,
for which ¢, 1(P,,) is defined. Set

Vo= ‘b;l(Pm)-
(3) There exists a map
J:{l,...,N} = {1,...,K}

such that
Vo C QJ(a) N {QJ(a) N Q}



Choose a nowhere zero holomorphic section o : {; — Elq,. Define
gik 1 Ny — C
by
0j = gjk(T)0%.
Let

g=sup sup |gj(x)].
7.k l’EQjﬂQk

Note that 1 < g < .
Set Q9 = |J V4. For each section s : Qy — E we introduce the notation

3|Va = $J(a)9J(a)

and define
IIsllv = sup, v, 15500
sllw = supgw, 576l
Note that
SJ(b) = SJ(a)9JI(a)J(b):
Since -
Vi@ C Q@) NQ)
we have
(4.1) sup [sy)l < sup  [sy)l-

VJ ([l) QJ (CL)OQ

Let © € Q ()N Then, because {W;} is a covering of €, there is some b for which z € W,
So

[55(0) (@) = 195(0)00) () 8500 (2)] < g |85 ()]
Combining this with (4.1), we obtain
lIsllv < g I|sllw-

Note how the pseudoconcavity was used to derive this inequality. Now we need a good
bound for ||s||w in terms of ||s||yy. This is the main point in the proof. Let

Ta = Qg 1(0)'
We now make use of the hypothesis that s vanishes to order h at each z,. Recall the

following version of the Schwarz Lemma [Sie55].

Lemma 4.5. If F(z) is holomorphic on P,, and vanishes to order at least h at the origin,
then

o
sup |F(2)] < ()" sup [F(2)].
zE€Py 1 zePr

Let ¢ = ro/r1. Applying the Schwarz Lemma to W, C V, for each a, we obtain

Isllw < ¢"[Isllv-

Note that ¢ satisfies 0 < ¢ < 1 and that ¢ only depends on the choice of {W,} and {¢,}.
We now have

Isllv < gllsllw < ¢"glls|lv
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and so s = 0 provided we take h to be an integer satisfying
Ing

4.2 _—J

(4.2) g

(Recallg>1and 0 < g < 1.) O

It is now easy to see how the Fundamental Lemma implies Theorem 4.2. Let I'(Q, E)
be the complex vector space of holomorphic sections of E over some neighborhood of €.
The neighborhood is allowed to depend on the section. Let J(z,) be the space of jets up
to order h at x, of holomorphic sections of E. Consider the map

D(Q,E) — &l J(2,).
The Fundamental Lemma tells us that this map is injective. The dimension of each J(x,)
AL +h
L .
Thus

h

We want to estimate the right hand side when h is large. We do this using Sterling’s
asymptotic formula:

hO(Q,E)§N< ”+h>.

m
m

m! ~ vV2rm—.
em

So, as h — o

n+h\ _(n+h)! T+ FEn+h)""
h  hln! - emhhn)
(n+h)"

n!
hTL

nl’

Q

~

Now we replace E by E*. This means that the transition functions are replaced by their
kth powers and so g becomes g*. Then h is replaced by ¢k for some ¢ depending on E and
SO

0 k n+ck
(4.3) R (2, EY) < C ok

This completes the proof, based on [And63], of Theorem 4.2.

We will need some minor modifications of Lemma 4.4. First we replace E* by a bundle
of the form LF @ F*. The transition functions for L*¥ @ F*® are of the form gfj ;; and so
are bounded by C**¢ for some C. So in the proof of Theorem 4.2 the inequality (4.2) is
replaced by

> < C'E™.

—InCk+s
4.4 h>——
(4.4) > g
and inequality (4.3) is replaced by
0 k S n+ C/(k + S) ! n
(4.5) h°(Q, L ®F)<C< d(k+s) <C'(k+s)".
Next we assume that local holomorphic coordinates (i, ..., (, are specified in a neigh-

borhood of each x, and that the only sections we consider are those that in a neighborhood
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of z, are holomorphic functions of only (i,...,(n for some m < n. Denote the space of
such sections by I'g(€2, E'). We have restricted the set of sections so of course it still follows
that a section vanishing to at least order h at each x, must be identically zero. At each z,

there are ( m; > polynomials in m variables of degree less than or equal to h. So

MmDﬂMQSN<m;h>

and as before
m+ck

mmFMQJﬁ)gc( m

)gdw.
And finally, we combine these two modifications.
(4.6) dim To(Q, LF @ F*) < C'(k + s)™.

We conclude with an application from [Sie55]. Let X be a compact complex manifold
with dim X = n. (Or, more generally, let X contain a relatively compact Andreotti
pseudoconcave subset, see [And63]. In particular, the results will apply to any X containing
a set Q as in Theorem 4.1) . Recall that meromorphic functions on a complex manifold X
are analytically dependent if

dfy Ao ANdfpm =0

at each point of X at which the functions are all holomorphic. And they are algebraically
dependent if there is a nontrivial polynomial P over C' with

P(fi,...,fm)=0

at all such points. It is easy to see that algebraic dependence implies analytic dependence.
Here is the converse.

Theorem 4.6. If the meromorphic functions fi,..., fm on X are analytically dependent,
then they are also algebraically dependent.

This implies that the field of meromorphic functions on X is an algebraic extension of
the field of rational functions in d variables, with d < n. Thus

K(X)=Q(t1,...,tq,0), 0 algebraic in ty,. .., t4.

We first relate memomorphic functions to line bundles. Given a meromorphic function f,
we may find a finite covering
x =y

and holomorphic functions over U; such that
fzzﬁont, and&:&ontﬂUk.
45 9 4k
Let L be the line bundle with transition functions

9gik = 4 € O"(U; NUy).
dk

Then
p={p;} and ¢ = {g;}
are global sections of L and f = p/q is a global quotient.
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We are now ready to prove Theorem 4.6. We change notation and start with analytically
independent meromorphic functions fi,..., f;» and a meromorphic function f with

dfi A ... Ndfpm =0

at each point where this makes sense. We need to find a polynomial such that P(f1,... fm, f) =
0 at each point where the functions are all holomorphic. Let L; be the bundle associated
to f; and let F' be the bundle associated to f. Then each f; is a global quotient of sections
of

Further, fl .. fkm £ is a global quotient of L¥ @ F* where k = ki + ... + k.
We write
S5

fi = sj, 0 global sections of L,
50
f = ZZ ¢,y global sections of F.

We fix some positive integers r and s. Let

Wo(r,s) = {polynomials of degree at most r
in each of X1,..., X

and degree at most s in X,,41}

We want to eliminate the denominators in our global quotients and also to work only with
homogeneous polynomials. So let

CXT X X
W(T, 5) = {Q(Ean’Xla s 7Xm7Xm+1) = gm USP( : ?7 -

?,..., 1 ),PGWO(T,S)}.

Thus @ € W(r,s) is homogeneous in the sense that
Q(a&,bn,aXy,...,aX;n,bXme1) = a™0°Q(E,n, X1, ..o, Xony Xing1)-
We may assume that at the points x, in the proof of Theorem 4.2

dfy A ... Adfy 0.

So these functions define a partial set of local coordinates which we use to define I'o(Q, L™ ®
F?).
1)\Text define
IT: W(r,s) = To(X,L™ ® F*)
by
I1Q = Q(s0,v, 81, - -, Sm, D).
It suffices to prove that II is not injective. The modifications of Theorem 4.2 apply as long
as (4.4) holds. Thus (4.6) holds with k replaced by mr:

dim To(X, L™ @ F*) < C'(mr + s)™.
It is easy to see that
dim W(r,s) = (r+1)"(s+1).
So if r and s can be chosen such that

(r+1)"(s+1) > C'"(mr +s)™
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then II is not injective. We write this inequality as

s\m
(4.7) s+1solmE)”
(L4 7)m
We first choose s so that
s+1>2Cm™

and then choose r large enough to guarantee (4.7).

5. HEARING THE FINITE TYPE CONDITION IN TWO DIMENSIONS

5.1. The finite type condition. Hereafter, we will assume that X is a complex surface
and 2 is a relatively compact domain with smooth boundary in X. The boundary 02 is
said to be of finite type (in the sense of D’Angelo [D82]) if the normalized order of contact
of any analytic variety with b€} is finite. The highest order of contact is the type of the
domain.

Assume that X is equipped with a hermitian metric h. Let r(z) be the signed geodesic
distance from z to b§2 such that r < 0 on Q and r > 0 outside of 2. Then r is smooth
on a neighborhood U of Q and |dr|, = 1 on U. Let 2/ € bQ) and let L be a normalized
(1,0)-vector field in a neighborhood of 2’ such that Lr = 0. For any integers j, k > 1, let

Lid0r(2)y= L...L L...L 80r(L,L)(7),
7 — 1 times k — 1 times

Let m be any positive integer. For any 2 <[ < 2m, let

_ 1/2

(5.1) A = (Y 1Luddr(h?)
k<
7,k>0

For any 7 > 0, let

(5.2) 0(2,m)=> A

It is easy to see that

(5.3) 6(2,7) < 7% and Mo(Z, 1) < 6(2,er) < A6(2,T),

for any 7 and ¢ such that 0 < 7,¢ < 1. Furthermore, bS) is of finite type 2m if and only if
§(2',7) Z 7™ uniformly for all 2/ € b2 and 6(zf, 7) S 7™ for some 2} € bS). (Here and
throughout the paper, f < g means that f < Cg for some positive constant C. It should
be clear from the context which parameters the constant C' is independent of. For example,
the constant in (5.3) is understood to be independent of 2z’ and 7.)

Let 2° be a fixed boundary point and let V be a neighborhood of 2° such that its
closure is contained in a coordinate patch. Let m be any positive integer. It follows from
Proposition 1.1 in [FoS89] that for any 2’ € V NS, after a possible shrinking of V', there
exists a neighborhood U, of 2z’ and local holomorphic coordinates (z1,z2) centered at 2’/
and depending smoothly on 2’ such that in these coordinates

UsNQ={2€Uy | p(z) =Re z2a+1(21,Im 23) < 0},

where ¥(z1,Im z3) has the form of

(5.4) P(z1,Im 29) = P(21) + (Im 22)Q(z1) + O (|21 + | Im 2|21 ™" + | Im 20?|21])
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with

Z D ap()Az and Q) =) > bi()AA

1=2 j+k=1 1=2 j+k=1
k>0 3,k>0

being polynomials without harmonic terms. Furthermore, there exist positive constants C
and Cs, independent of 2/, such that

1
C14(z ( Z |aji (2 2) < CoAi(2)
J+k<l
kS0

for 2 <1< 2m.

The above properties hold without the pseudoconvex or finite type assumption on §2.
Under the assumption that b2 is pseudoconvex of finite type 2m, it then follows from
Proposition 1.6 in [FoS89] that for all 0 < 7 < 1,

(5.5) ZBl <6, 7)V2,

where

= (2 baeR)™”

J+k<l
3,k>0

The anisotropic bidisc R, (z) is given in the (z1, 22)-coordinates by
(5.6) R (2) = {lz1] < 7,]z2| < 8(</,7)'/?}.

We refer the reader to [Ca89, Mc89, NRSW89, Fu05b] and references therein for a discussion
of these and other anisotropic “balls”. It was shown in [Fu05b] (see Lemmas 3.2 and 3.3
therein) that the anisotropic bidiscs R.(2') satisfy the following doubling and engulfing
properties: There exists a positive constant C, independent of 2/, such that if 2’ € R-(2")N
bQ), then C15(2',7) < 8(2",7) < C3(2',7), R(2') C Rer(2"), and R, (2") C Ror(2').

5.2. Interior estimates. Let E be a holomorphic line bundle over 2 that extends smoothly
to the boundary b§2. Let e;()\; z, w) be the spectral kernel of the -Neumann Laplacian on
(0, 1)-forms on Q with values in E¥. Let 7: U — b be the projection onto the boundary
such that |r(z)| = distance (z,7(z)). Shrinking U if necessary, we have 7 € C*°(U). Write

T = 1/\/E

Proposition 5.1. For any C,c > 0,

(5.7) tr en(Ck; 2, 2) < k(0(m(2), 7)) "1,

for all sufficiently large k and all z € Q with d(z) > ¢(8(n(2), 7)) "2

It is a consequence of a classical result of Géarding [G53] that for any compact subset K
of Q,

(5.8) tr ex(Ck; 2, 2) < k2, for z € K.

Evidently, the constant in the above estimate depends on K. (See Theorem 3.2 in [Ber04] for
a more general and precise version of this result.) In fact, this is also true for any z € 2 with
d(z) > 1/Vk. (Compare estimate (2.3) in [Me81], Theorem 3.2 in [Ber04], and Proposition
5.7 in [Ber05].) Therefore, it suffices to establish (5.7) on {z € Q,c(d(n(2),7))/? <
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|r(2)] < 7%}. This also follows from the elliptic theory, via an anisotropic rescaling. We
provide details below.

Let 2’ € bQ). Following the discussion in Section 5.1, we can choose holomorphic coordi-
nates centered and orthonormal at 2z’ such that in a neighborhood U, of 2/, bQ2 is defined
by p(z1,22) = Re 22+ (21, Im 22) where 9(z1,Im 29) is in the form of (5.4). Assume that
the hermitian metric is given on U, by

.2
(5.9) h= % N hj(z)dz Adz, with by (0) = 5
§l=1

and the fiber metric on FE is given by

2
(5.10) e(2)P =e ¥ with @(z) = Y azE + O(|z),
jl=1
where e(z) is an appropriate holomorphic frame of E over U,.
Write Q,, = QN U,. Let wh = dp and W] = pz,dz1 — pzdze. Let wy and w; be the
orthonormal basis for (1,0)-forms on 2, obtained by applying the Gram-Schmidt process
to wh and w). Let Ly and L; be the dual basis for T19(Q,).

Write 0 = §(2',7) and let ¢ > 0. For any oy such that 7, > op > 06,1/2, we define
the anisotropic dilation (z1,22) = Fj(C1, () = (T6¢1, ox(2). Let UF = Fk_l(UZ/) and
QF = F71(Q,/). On QF,, we use the base metric given by

.2

; _

k) — 5 E hji(TiC1, okC2)dC A dG
=1

and on E*) = F},(E*) we use the fiber metric given by the weight function

") (¢) = k(11 o1a).

Note that QF, = {(¢1,¢2) € UL | pi(Gr, ¢2) < 0}, where pi(C1, C2) = (1/0%)p(Tr21, 0x22). Let
w} and w§ be the orthonormal basis for (1,0)-forms on QF, obtained as in the proceeding
paragraph but with p replaced by pi and (21, z2) replaced by (C1,(2) respectively. Let L¥
and L% be the dual basis for T40(QF,). We define Fy: L?(,, E*) — L*(QF,, E(®) by

Fr(v)(C1,¢2) = (Thor)v(TrC1, 01C2)

and extend Fj to act on forms by acting componentwise as follows:

Fr(01@1 + v9w3) = Fiu(v1)@h + Fr(v2)@h, Fulvo, Awg) = Fi(v)Th Aws.

(Hereafter, we identify a form with values in E¥ with its representation in the given local
holomorphic trivialization.) It is easy to see that Fj is isometric on L2-spaces with respect
to specified metrics:
2 2
HuHh,kcp = kaUHh(k>,¢(k)a
where || - ||k, denotes the L2-norm with respect to the base metric h and the fiber metric
kg and likewise || - |’h("‘)7w(’“) the L2-norm with respect to the base metric A*) and the fiber
metric p*). Let
QW (u,v) = T,?Qg(flglu,fglv)
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with D(QW) = {v | F,,'v € D(QL) and Supp F, 'v C U}, where Qf = QQ1 is the
sesquilinear form associated with the d-Neumann Laplacian [f, = Dg’l on (0,1)-forms on

Q with values in E*. Let O®) be the self-adjoint operator associated with Q*).
Let P' = {¢ € UL | |1] < 1/2,]¢2 + 1| < 1/2}. It is easy to see that for sufficiently large
k > 0, P’ is a relatively compact subset of Q'z",.

Lemma 5.2. Let u € D (QW) N CX(P'). Then
(5.11) lullf gr, S QW (w,u) + Ilullfo o
where || - ||y o, s the L2-Sobolev norm of order 1 on QF,.

Proof. Write u = ulwgk) + uﬁé’“) and v = f,;l(u) = v1w1 + vowso. Since v is supported
on R, = Fi(P") = {2z € Uy | |z1| < (1/2)73, |22 + 0%| < (1/2)01} CC Q, it follows from

integration by parts that

2
Q6 (v, v) + kllvll7 Jop & Z ||Ljvl||i21,kcp'

Notice that on R},
|hji(z) = 0 S T
¢From Section 5.1, we obtain by direct calculations that on R},

Ti= (14 0(m) 2+ O(m) -2, T = O(me)-2 + (14 0(m) -2

821 82’2 81 82’2.
Thus,
2
k k T
QW (u,w) + ullZ iy o0 = TEQEW,0) + KlIIF 4p) 2 Y I Ljuillf s
Gl=1
2 Ou; ou;
ZZ;(II(% 00 00 + 25 u 2w ) ,Zl” 2|26 -
J= Js

Since |p*)| < 1 on P" and u is compactly supported in P’, a simple integration by parts
argument then yields the estimate (5.11). O

We now complete the proof of Proposition 5.1. From Lemma 5.2, we know that 0®*) is
uniformly (independent of k) strong elliptic on P’. Let P”" ={¢ € P' | |G1] < 1/4,|(2+1| <
1/4}. Thus by Gérding’s inequality,

(5.12) lllonr,pr S @) Mallpr + ([l pr
for any u € Cf)’f’l(Q’j,, E(k)), where O = T,?}'kDgT,; acts formally.
Let Ex(A) be the spectral resolution of (), the d-Neumann Laplacian on € on (0, 1)-

forms with values in E*. Let v € Ek(Ck)(Lg’l(Q,Ek)) be of unit norm. Then for any
positive integer M,

(5.13) 1(E6) M ollg, g < (CR)*M.
Let ux = Fi(v'), where v’ is the restriction of v to U,,. Then
(O May = M FL(O6) Mo,
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By (5.13), we have
H(D(k))MukHiww(m S L
We obtain from (5.12) and the Sobolev embedding theorem that
Tkok|v(0, —ok)| = [ur(0, =1)| < 1.

Thus by (2.1), we have

tr ex(Ck; (0, =03, (0, —ok)) < (mhow) "2 < ko .
Since the constant in this estimate is uniform as z’ varies the boundary b€} and oy, varies
between 65,1/ % and Tk, we thus conclude the proof of Proposition 5.1.

5.3. Boundary estimates.

5.3.1. Main boundary estimate. We shall establish the following boundary estimate for the
spectral kernel.

Proposition 5.3. Let C' > 0. For any 2z’ € b) and sufficiently large k,

(5.14) / tr ex(Chk; z,2)dV (2) < (6(z',13,)) V2.
R (2/)NQ

Recall that 7, = 1/Vk and R, (2) is the anisotropic bidisc given by (5.6). Assume
Proposition 5.3 for a moment, we now prove the sufficiency in Theorem 1.3. In fact we
shall prove the following:

Proposition 5.4. Let Q CC X be a smoothly bounded pseudoconver domain in a complex
surface. Let E be a holomorphic line bundle over € that extends smoothly to bQ2. If b§2 is
of finite type 2m, then for any C > 0, there exists C' > 0 such that Ny(Ck) < C'k™,
More precisely, limy_.oo Ni(Ck)/k'T™ =0 when m > 1.

Proof. We cover b2 by finitely many open sets, each of which is contained in a coordinate
patch as the V’s in Section 5.1. Let 2/ € V N bdQ. Multiplying both sides of (5.14) by
(6(2', 7))~ Y/? and integrating with respect to 2’ € V NbQ, we obtain by the Fubini-Tonelli
theorem that

/Qtr er(Ck; z,2)dV (2) /Vmbﬂ XQORTk(Z/)(z)((S(z”Tk))fl/Z dS(z") S/‘,mbg(é(ZI’Tk))l dS(2").

(Here xg denotes the characteristic function of the set S.) By Lemma 3.4 in [Fu05], we
then have

(5.15) tr ex(Ck;2z,2)dV(z) S Tk_z/ (6(2', )"t dS(2),

Aﬁ{zefﬂd@)<c(6(71'(z),7‘k))1/2} \%al29}

for some positive constant c.
On {z € Q| d(z) > c(6(n(2),))"/?}, we know from Proposition 5.1 that

(5.16) tr ex(Ck; 2, 2) < k(6(n(2), 7))~ S k™.
Also, on any relatively compact subset of 2, we have
(5.17) tr e, (Ck; 2, 2) < k2,

where the constant depends on the compact set (see (5.8)). By definition, we have

(5.18) N(Ck) = /Q tr ex(Ch; 2, 2) AV (2).
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It then follows from (5.15)-(5.17) that
Ni(CE) < EM™,
Note that

2m

-
1 1i k__ —
(5.19) kggo 5(2!, 1)

when 2’ € b2 is of type less than 2m and the set of weakly pseudoconvex boundary points
has zero surface measure. Combining (5.15)-(5.19), we obtain from the Lebesgue dominated
convergence theorem that lim supy,_,., Np(Ck)/k™! =0 when m > 1. O

Remark. Heuristic arguments seem to suggest that the optimal estimates are Ni(Ck) <
E™Ink when m = 2 and Ni(Ck) < k™ when m > 2.

The remaining subsections are devoted to prove Proposition 5.3. The proof follows along
the line of arguments of the proof of Lemma 6.2 in [Fu05b]: we need to show here that the
contributions from the curvatures of the metric on the base X and fiber metrics on E* are
negligible. We provide necessary details below.

5.3.2. Uniform Kohn Estimate. We will use a slight differently rescaling scheme from the
one in the previous section. Following [Fu0O5b], we flatten the boundary before rescaling
the domain and the O-Neumann Laplacian. Let 2’ € b). As in Section 5.2, we may choose
local holomorphic coordinates (21, 22), centered and orthonormal at 2/, such that a defining
function p of b2 in a neighborhood U, of 2z’ has the form given by (5.4). Furthermore, we
may assume that the base metric h on X and the fiber metric ¢ on E are of the forms (5.9)
and (5.10) respectively. Write

p=TRe 2o+ f(z1) + (Im 22)g1(21) + (1/2)(Im 22)%g2(21) + O(| Im 2z5?),
where

f(z1) = P(21) + O(|z1*™h), g1(21) = Q(21) + O(|21|™ 1), g2(21) = O(|z1)).
Let
(m,m2) = @ (21, 22) = (21, 22+ h(21,Im 22) — F(z1, 22)),

where
F(z1,22) = 392(21)(Re 29+ h(z1,Tm 22))% +i(g1(21)(Re 22) + g2(21)(Re 22)(Im 23)).

(See [Fu05b], Section 4.)

Let p(z) = p(z) — (1/2)g2(21)(p(2))?. Then p(z) is a also defining function for 2,/ =
QN U, near the origin. Let w; and wy be an othonormal basis for (1,0)-forms on U,
obtained as in Section 5.2 but with p replaced by p. Let L; and Lo be the dual basis for
TH(U,).

We now proceed with the rescaling. Write 6 = (2, 7). For any 7 > 0, we define

(w1, w2) = D 7 (n1,m2) = (m/7,m2/9).

Let ./, = Dy, 0®, and let Q. = ./ () C {(w1,w2) € C? | Re we < 0}. (In what
follows, we sometimes suppress the subscript 2’ for economy of notations when this causes
no confusions.) Let

P(2") = {Jw1] < 1, Jwa| < 6712},
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It is easy to see that Ro-1,(2') C ®,' (Pr(2')) C Ror(2') (see Lemma 4.1 in [FuO5b]). Let

Gri (L2(Qu 1)) — L%O 1)((22/, EF) be the transformation defined by

Gr(u1,uz) = | det d®, Y2 (ug (O, )@1 + ua (P, )w2),
where on L?(€2,/.) we use the standard Euclidean metric and we identify as before forms
with values in the line bundle E* with its representation under the given holomorphic
trivialization. Let 7, = 1/vk and 6}, = (2, 7%) as before. Let
(5.20) Qr, (u,v) = Tngg(ngua ngU)
be the densely defined, closed sesquilinear form on (L?(Q2,,))? with D (Qr,) = {G;, ! (u); u €
(QQ) Supp u C U,/}. Here, as before, Qg(-, -) is the sesquilinear form associated with

the -Neumann Laplacian () on L(0 1)(9, EF).

The following lemma play a crucial role in the analysis. It is a consequence of Kohn’s
commutator method and is the analogue of Lemma 4.5 in [Fu05b]. We use || - ||? to denote
the tangential Sobolev norm of order € > 0 on C2 = {(wy,w3) € C? | Re wy < 0}.

Lemma 5.5. There exists an € > 0 such that for any sujﬁciently large k,
(5.21) Qn (u ) + [l 2l w |12 +776, ||| |||2 Les

for alluw € D(Q,) NCX (P, (2)).
Proof. Let v = Gru = v1wy + vows. It is easy to see that

ke S 1, [h(2) = 65l S 7

on R, (%'). Thus
2 2 2 2
[ull” = [vll7 ke = [lorllo + llv2llo,
where || - o denotes the L?-norm corresponding to the standard Euclidean metric on U,
in the (21, 29)-variables. We will also use dV and dSp to denote the volume and surface
elements in the Euclidean metric.
By integration by parts, we have (see [H65, Ko72]),
2

(5:22) Qh(v,) + Mol 2 Flolf s+ 3 1Tl + [ (005 T)) e ds,
j,l=1

Therefore,

Q. (u,w) + [[ull* 2 7 (Q6 (v, v) + kllvﬂiw)

> 7 kuvuo+ZuL all2 + / (00p(Ln, Tn)) o] dSo)

jll

2 7k (kllvllg + Z 113 +Z IZ1v5115)

7,l=1

2 Mlull* + Z 1L | +Z 1L

3,l=1

where Lj;, = 74x(® 7. )«(L;). The estimate (5.21) then follows from (the proof of )
Lemma 4.5 in [Fu05b). O
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Once Lemma 5.5 is established, the proof of Proposition 5.3 follows along the lines of the
proof of Lemma 6.2 in [Fu05b]. Since there are necessary modifications due to the possible
present of the d-cohomology, we provide the necessary details for completeness in the next
subsection.

5.3.3. Comparison with an auziliary Laplacian. Let € be the order of the Sobolev norm in
Lemma 5.5. Let W, s, be the space of all u € LQ(C2 ) such that

(5.23) lullZ s, =l w 2+ HI H!2 142 < 00

Let .5, be the associated densely defined, self—adjoint operator on L?(C2%) such that
HDl/QuH2 and D(Dl/2) = W.ys,. Let N.;, be its inverse. Let x(wi,w2) be a

€ 51€ 5751@
smooth cut-off function supported on {|wi| < 2,|ws| < 2} and identically 1 on {|wq| <

12

1, Jwa] < 1}. Let x5, (w1, w2) = X(wl,élipwg). We use \;(T) to denote the j' singular
value (arranged in a decreasing order and repeated according to multiplicity) of a compact
operator T. It then follows from the min-max principle that

(5:24) Ajirr1(T1+T2) < Xja(T1) + A1 (T2)  and - Ajypq (T30T1) < Aja (T1) A (T5)
(see [W80]).

For sufficiently large k£ and j, we then have
(5.25) N N2E) S (L4 joy/ )~/

(see Lemma 5.3 in [Fu05b]).
Let k be a cut-off function compactly supported on U, and identically 1 on a neighbor-
hood of 2’ of uniform size. Let

E;,(\) = G5 KB\ T0)RGn,  (L*(Q7,))? — (L ()%,

The kernel of E,, () is then given by
(5.26)

en (N w,0') = e(N/72; D71 (w), &2 (w'))r(w)r(w')| det dd; ! (w)|2 | det dd; (w')]2.
We now proceed to prove Proposition 5.3. By (5.26), it suffices to prove that
(5.27) / tr e, (C;w,w) dVp(w) < (5,:1/2.
Pr. (z’)ﬂQTk

Let Oy : (L2(Q, N Py (2))? — (L*(Qr, N P, (2')))? be the operator associated with the
sesquilinear form @, given by (5.20) but with domain

D (Qr) = {9, (u) | u € D(QF),Supp u C ' (Pr ()}
Thus O, = 72G,'0G,, . Let Ny, = (I +0O,,)". It follows from Lemma 5.5 that
Qr (1w 0) + [l Z [lull2 .
for any u € D (Dif) Therefore,
lull? = Qr(N/2u, N3/2u) + | N3/2ul® 2 DLy, N3/ 2ul?.

Thus Nl/2 X5 NTI,C/2 = X5, N1/2D1/2 Nl/2 It follows from (5.24) and (5.25) that

k

(5.28) N(NE?) S N (e, N22) S (14 5oy *) /4,

E(Sk
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Let K be any positive integer such that K > 4/¢. Let X9, 5 =0,1,...,K, be a family
of cut-off functions supported in {|w| < 1, |wz| < 1} such that x(?) = y and xU+Y) =1 on
Supp x\7). Let

EY) (V) = G, w(7706) Ex(vr 2)wGr, - (L2(Q2,))? — (L2(24,))%.
Thus ES?(A) =E; ()\) and

(5.29) IEQ (Cul| < [ul-
Furthermore,
(530 Qu (O ED(O) = 7205 (@) (n2Th) BT 2)rG w)

(Here we use Q(u) to denote Q(u,u) for abbreviation.)
It is straightforward to check that

(5.31) Q&(0u, 6u) = Re ((004u, Gu)) + (1/2)((u, [0, Alu))
where 6 is any smooth function on Q and A = [0",0]0+8[0",0] + 8" [0,0] + [0,0)8". (Here
9 = 52,,@ is the adjoint of @ with respect to the base metric h and fiber metric k¢.) Note

that [0, A] is of zero order and its sup-norm is bounded by a constant independent of k.
It follows from (5.30), (5.31), and the Schwarz inequality that for any u € (L?(£,,))?,

(5.32) Qr (S ED () S IS ELD (C)u? + xS TVED (Ol 2.

Tk

Hence
l 4
1+ 3o VB (Cul? = Qn 0 ED (C)u) + xS ED (C)ul?
1
< ISVEED )l + xS TVED @ul? + xS ED (C)ul?

It then follows from (5.24) that

i1 05 ED(C)) < Ajpa (N2 a5 (1 + O, ) Y2 ED (0))
(5.33) < A1 (VY2 (g O EED(0) + A0 (8 TVED ()
+ Aj+1(xfsk)E$,3(C>))-

Using (5.28), (5.29), and(5.33), we then obtain by an inductive argument on K — (I + ')
that

(5.34) N (s, BY () £ (14 oy /)~ U el

for any pair of non-negative integers ,1’ such that 0 <!+ < K and for all j > C;6, 1/2
where C] is a sufficiently large constant. In particular,

Ai(xs,Er (C) S (1 + o /2T,

Since E, (C) has uniformly bounded operator norms, we also have that \;(xs, E-, (C)) < 1.
The trace norm of X(SkETk (C) is then given by

)

Ke

_1 e 1 Ke _1
D N EL )+ D N En(C) Shr+ Y (1440 2)F S
IS0k 2 J20k~ p j25k7%

Inequality (5.27) is now an easy consequence of the above estimate.
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5.4. Estimate of the type. In this section, we prove the necessity in Theorem 1.3. More
precisely, we prove the following:

Proposition 5.6. Let Q) CC X be a smoothly bounded pseudoconvexr domain in a complex
surface. Let E be holomorphic line bundle over ) that extends smoothly to bS). Let M > 0.
If for any C > 0, there exists C' > 0 such that Ny(Ck) < C'kM for all sufficiently large
integer k, then the type of the domain of b2 is < 8M.

The proof of the above proposition, using a wavelet construction of Lemarié and Meyer
[LM86], is a modification of the proof of Theorem 1.3 in [FuO5b]. We provide the full
details below. We begin with the following simple well-known consequence of the min-max
principle.

Lemma 5.7. Let Q) be a semi-positive, closed, and densely defined sesquilinear form on a
Hilbert space. Let [ be the associated densely defined self-adjoint operator operator. Let
{fup | 1 <1<k} CD(Q). Let \ and N be the I"-eigenvalues of operator O and the
hermitian matriz (Q(uj,w;))1<;i<k respectively. If

k k
1D aw)* = CD ol
=1 =1

for all ¢, € C, then \; > C\;, 1 <1< k.
Proof. By the min-max principle,

= inf{\(L) | L is an [-dimensional subspace of C*}

where
o k ~ k
ML) = sup{z c;aQuj,w) | (c1,...,cx) € L, Z l¢? =1}
=1 =1
Likewise,
N = inf s , €L, =1}
(= dnt sup{@Qu) [ u e Ll = 1)
dim(L)=l

For any [-dimensional subspace L of C¥, let L = {Zle auy | (c1,...,c;) € L} and let
A(L) = sup{Q(u, u) | u € L, [lu]| = 1}.
Then A(L) > Co\(L). Hence N > Co\; for all 1 <1 < k. O

Let 2/ € bQ). We follow the notations and setup as in the proof of Proposition 5.1.
Suppose the type of b2 is > 2m at 2. Then P(z1) = O(|z1|*™). It follows from (5.5) that
Q(z1) = 0. Hence

(5.35) Y(z1,Im 29) = O(|21[*™ + [ Im 29]|21 | + | Im 20|21 ]).

Let b(t) be a smooth function supported in [—1/2, 1] such that b(¢t) =1 on [0, 1/2] and

b2(t) +b%(t—1) = 1 on [1/2, 1]. Tt follows that {b(t)e*™"* | | € Z} is an orthogonal system*
in L2(R) ([LMS86]; see also [Dau88, HG96]). Write 23 = s +it. Let x be any smooth cut-off
function supported on (—2, 2) and identically 1 on (—1,1) and let

B(z) = (b(t) — it/ (t)s — b"(£)s* /2)x(s/ (1 + [¢])).

“In fact, it was shown by Lemari¢ and Meyer [LM86] that the Fourier transform of b(t) is a wavelet
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Then B(0,t) = b(t) and |0B(z2)/0%| < |s|%. Let a(z1) be a smooth function identically
1 on [21] < 1/2 and supported on the unit disc. For any positive integers j and for any
positive integer [ such that 2™=1/j <1< 2™ /5 let

uj,l(z) — l1/222(m+1)ja(22j21)B(22mj22)627rl22mjz2 ekap(z)/2 (g(z))fl/lej

where g(z) = det(h;;(2)). For any sufficiently large j, u;; is a compactly supported smooth
(0,1)-form in D (Q%). (Recall that Qf is the sesquilinear form associated with the O-
Neumann Laplacian O on Q for (0,1)-forms with values in E*.) Moreover, after the
substitutions (21, z2) — (272 21,272™ 25), we have

—92miy(220 5 2~ 2miy)
%,kcp :l/(ca(zl)‘QdVo(Zl)/R dt/ |B(ZQ)‘2647rlsds,

By (5.35), [22mIqp(27% 21, 272mt)| < 272™I. Note also that 1272 < =127/ Thus

[l

(17

_0272771]'
%L,ktpzl/ \a(z1)|2dVo(Z1)/ dt/ |B(20)[2645 ds
C e )

2mj

1/2 —C2-
z/mmﬁwwo/ a/ 645 ds > 1.
C 0 —1

Similarly, |’Uj,lH%L7k<p < 1, and hence ||Uj,l”%7kg0 ~ 1. Also, for any [ and I’ such that 2m/~1/j <
LU <2mi/j,

—9Pmiyy(2-2 2 2-2mit) il
(W) uj0 ) Y hoyp = \/ﬁ/ |a(z1)|2dVo/ dt/ | B(zg) |22 (s =000 g g
C R -

We decompose the above integral into two parts. Let A be the above expression with the
upper limit in the last integral over s replaced by 0 but keep the lower limit. Let B likewise
be the expression with the lower limit replaced by 0 but keep the upper limit. Hence
((wjg, wjp))h ke = A+ B. We first estimate B:

—22miy (2720 2,27 2MIt) ,
B| < \/uf/ |a(zl)|2dVg/dt/ |B(2) 2015 g
C R 0

< o CI+1)272M\  —lg—mj
Nl+l’(1_e )NJ 2

To estimate |A|, we use the orthogonality of the system of functions {b(t)e*™"* | [ € Z} in
L?(R). Tt follows that if [ # I, then

0
A=VIF / (=) Ve / dt / (IB(s,8)]% — [B(0, 1) ]2) (54010 g
C R —00
Therefore,
1 0
a(z 0 t se s ds + j~lo—mi,
SV [ Ja(eoPave [ de [ s ds VI 5 52
C -1 —0

For sufficiently large j and for any k, [ such that 2™9=1/j <[ 1" < 2™ /j | # I', we then
have,

|((wsa, wj ) el S 57127
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For any ¢; € C, we have

1Y ejall v =D el lwsillh e — D cer (i, i) nre
1 l

Ll
[

> Z a2l — 57127 e
!
2(1-5? Z!Cll >Z|Cl\2

where the summations are taken over all integers | between 2™/=1 /5 and 2™J /.
Write LY = e L1e7%¢. Then

(5.36) Q& (ujp,uj) <
Recall that

¥ k
+ | Lo all7 gy + 1 L77050007 4

p(z) = O(z*) and |hj(2) = 8l < 2.

Moreover,
0 0
Ly = O(\Z\)ale + (1)8722
and
0 2m—1 m 2 0
L1:O(1)8721+O(\21| + | Im z3]|2z1|™ 4 | Im 29| )87272

Let k = 2%. Tt follows that when |21| < 27% and |zo| < 272",
He(=)| S 1 and kVi(2)] < 2%,
Therefore, on the one hand,

8u]’ Bujl

IZowjllf kg S 212> IIh/w

22m],¢] 2]21 2—2m]t) )
24j_|_24m]/|a 2'1| dVo/ dt/ ” ‘ 47rlsd
079
C272mj
<ot +24m3/ |a(z1 |2dVo/ dt/ Is*e?™s ds
< 24] +24m]l —4 < 243‘
On the other hand,

Hh ko T 152>

8u31 (‘3qu

12y il ke S IRV @zl o + 15 Hh,,w + [ (2P + [tz ™ +2)

Hhk‘cp

1 Cc2-2mi
< o 4 9= Amitdj / |a(zl)]2dV0/ dt/ et ds
S 24j C 1 0
We thus have
(5.37) Q6 (uji,ujp) S 2V
Let A, be the I*" eigenvalues of Dg. The hypothesis of Proposition 5.6 implies that
(5.38) Ak > Ck
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when [ > C'kM. Proving by contradiction, we suppose that M < m/4. It follows from
Lemma 5.7 and (5.38) that,

(5.39)

j_12mj j—lzmj—l

ST Qb)) > Y N > C@TR2mIT - Ok
=1

l:j—12mj—1

Combining (5.37) and (5.39), we then have

Dividing both sides by k = 2% and j~'2"~1, we obtain

1> C(1— r2UM=—mjtly,

Since by assumption, C' can be chosen arbitrarily large, we arrive at a contradiction by
letting 7 — oo. We thus conclude the proof of Proposition 5.6.
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