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ABSTRACT. We study the interrelation among pseudohermitian
and Lorentzian geometry as prompted by the existence of the Fef-
ferman metric. Specifically for any nondegenerate CR manifold M
we build its b-boundary M. This arises as a S quotient of the b-
boundary of the (total space of the canonical circle bundle over M
endowed with the) Fefferman metric. Points of M are shown to be
endpoints of b-incomplete curves. A class of inextensible integral
curves of the Reeb vector on a pseudo-Einstein manifold is shown
to have an endpoint on the b-boundary provided that the horizon-
tal gradient of the pseudohermitian scalar curvature satisfies an
appropriate boundedness condition.

Dedicated to the memory of Stere Ianus®

1. INTRODUCTION

The present paper is part of a larger programme aiming to the study
of the relationship among space-time physics and Cauchy-Riemann ge-
ometry. A space-time is a connected C*° Hausdorff manifold 9t of
dimension m > 2 which has a countable basis and is equipped with a
Lorentzian metric F' of signature (— + ---+) and a time orientation.
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2 B-COMPLETION OF PSEUDOHERMITIAN MANIFOLDS

The metric F isn’t positive definite yet it furnishes a distinction of tan-
gent vectors into types (timelike, null, spacelike) leading to a natural
causality theory on M (cf. [5], p. 21-32). A CR structure is a bun-
dle theoretic recast of the tangential Cauchy-Riemann equations i.e.
given an orientable connected (2n + 1)-dimensional C'*° manifold M a
CR structure (of CR dimension n) is a complex subbundle T} o(M) C

T(M) ® C, of complex rank n, such that 1) T o(M) N Ty (M) = (0)
and ii) if Z, W € C®(To(M)) then [Z, W] € C*(T1o(M)) (cf. [19], p.
3). The tangential Cauchy-Riemann operator is the first order differ-
ential operator 0y : C'(M) — C(Tp1(M)*) given by (9,f) Z = Z(f)
and a C' solution to 0,f = 0 is a CR function. CR manifolds (i.e.
manifolds endowed with CR structures) appear mainly as real hy-
persurfaces in complex manifolds although nonembeddable examples
exist. The embedding problem is then to look for an immersion of
the given CR manifold (M,T;(M)) into a complex manifold V' such
that the CR structure be induced by the complex structure of V i.e.
Tio(M) = [T(M)®C] N T (V) (where T*°(V) is the holomorphic
tangent bundle over V'). If M is embedded in V' then any holomorphic
function on V' defined in a neighborhood of M restricts to a CR function
on M and the CR extension problem is to decide whether the restric-
tion morphism O(V) — CR'(M) is surjective. The embedding and CR
extension problems are related, both have local and global aspects, and
both are physically meaningful (cf. [46] and [58]). The geometric ap-
proach to the study of tangential Cauchy-Riemann equations is through
the use of pseudohermitian structures (as introduced by S.M. Webster,
[57]). As a mere consequence of orientability the conormal bundle
H(M): = {w € T(M) : Ker(w) D H(M),}, x € M, is an oriented
real line bundle (over a connected manifold) hence H(M)*+ ~ M x R
(a bundle isomorphism). Here H(M) = Re{T1o(M) & Tp1(M)} is
the Levi distribution. Hence globally defined nowhere zero sections
6 € C(H(M)*) exist and a synthetic object (M, T1o(M), ) is a
pseudohermitian manifold. The terminology (cf. [57]) is motivated by
the formal similarity to Hermitian geometry i.e. under the assump-
tion of nondegeneracy on any pseudohermitian manifold one may build
(cf. [57], [56]) a unique linear connection V (the Tanaka- Webster con-
nection) resembling Chern’s connection of a Hermitian manifold (cf.
e.g. [59]). The relationship to semi-Riemannian geometry is due the
presence of a semi-Riemannian metric Fj on the total bundle of the
canonical circle bundle S — C(M) — M which transforms confor-
mally under a change of # and which may be explicitly computed in
terms of pseudohermitian invariants (such as the connection 1-forms
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of V and their derivatives, the pseudohermitian scalar curvature, etc.).
Also Fj is a Lorentz metric when M is strictly pseudoconvex and the
Lorentzian manifold (C' (M), Fy) admits a natural time-orientation so
that C'(M) is a space-time. As it turns out, analysis and geometry
problems on C(M) and M are related e.g. the CR Yamabe problem
(find u € C°°(M) such that the Tanaka-Webster connection of e“d has
constant pseudohermitian scalar curvature, cf. [19]) is precisely the
Yamabe problem for the Fefferman metric Fj.

The scope of the present paper is to exploit B.G. Schmidt’s construc-
tion (cf. [50]) of a b-boundary for the space-time (C'(M), Fy) in order
to build a b-completion M and b-boundary M of the given CR manifold
M. The completion M is built in § 4 and Theorem 1 there lists its main
topological properties. It should be emphasized that the construction
of the b-boundary and b-completion depend on a fixed contact form 6
and the resulting objects M and M are not CR invariants. In §5 we
take up the problem of differential geometric conditions (in terms of
pseuohermitian invariants) on a smooth curve in M implying that its
endpoint lies on the b-boundary M (cf. Theorem 3). The main ingredi-
ent is an acceleration condition in [15], the Dodson-Sulley-Williamson
lemma, of which a rigorous statement and precise proof are given in
Appendix A to this paper.

The constructions in § 4 are actually sufficiently general to carry over
easily from the case of a strictly pseudoconvex CR manifold to that of
a nondegenerate CR manifold of arbitrary signature (r, s). To preserve
a solid bond to physics of space-times we only detail the constructions
(of b-completions and b-boundaries) for strictly pseudoconvex CR man-
ifolds M (whose total space of the canonical circle bundle is a space-
time, see § 3 below) yet a brief application is given when M = P(Ty)\ /
is Penrose’s twistor CR manifold (a 5-dimensional nondegenerate CR
manifold of signature (+—), cf. [46]) separating right-handed and left-
handed spinning photons.

The problem of building a CR analog dcg M to the conformal bound-
ary 0.9 of a given space-time (cf. G.B. Schmidt, [52]) may be solved
along the lines in §4 and the solution will be presented in a further
paper. Since the restricted conformal class of the Fefferman metric is
a CR invariant, OcrM would be a new CR invariant. A direct con-
struction of dog M (avoiding the use of the Fefferman metric) is fea-
sible (as suggested by the Reviewer) by a Cartan geometry approach
(this problem will be addressed elsewhere). Aside from the attempts
due to B. Bosshard, [9], and R.A. Johnson, [34] (partially confined to
toy 2-dimensional models) no explicit calculations of b-boundaries of
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space-times seem to be available in the present day literature. As well
as in the classical theory (as built in [50]-[52]) there is a lack of explicit
computability of the b-boundary of a CR manifold yet emerging new
approaches and techniques (cf. A.M. Amores & M. Gutiérrez, [1], H.
Friedrich, [24], M. Gutiérrez, [28], F. Stahl, [53]) are rather promis-
ing and (as opposed to more pessimistic expectations, cf. R.K. Sachs,
[49], p. 220) b-boundary techniques may play a strong role in general
relativity.
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2. A BRIEF REVIEW OF CR GEOMETRY

2.1. CR structures, Levi form, Webster metric. Let (M, T} y(M))
be a nondegenerate CR manifold, of CR dimension n. Then every
pseudohermitian structure # on M is a contact form i.e. 6 A (df)"
is a volume form. Once nondegeneracy is assumed, the Reeb vector
is the unique globally defined everywhere nonzero tangent vector field
T € X(M), transverse to the Levi distribution, determined by 0(7T") = 1
and T | df = 0. The Levi form is

Lo(Z, W) = —i(d9)(Z, W), Z,W € Ty o(M).

Let J : H(M) — H(M) be the complex structure along the Levi
distribution i.e. J(Z + Z) = i(Z — Z) for any Z € Ty o(M). It is
customary to consider also the real Levi form i.e.

Go(X,Y) = (d0)(X,JY), X,Y € H(M).

Then Gy is bilinear, symmetric and compatible with J (as a mere con-
sequence of the integrability conditions imposed on 77 (M)) and the
C-linear extension of Gy to H(M) ® C coincides with Ly on T7 o(M) ®
To1(M). When M is nondegenerate (an assumption we shall main-
tain for the remainder of this paper) there exist nonnegative integers
r,s € Z4 (with r+s = n) such that Ly, has (constant) signature (r, s)
at any point x € M. Under a transformation of contact form 6=\0
(where A : M — R\ {0} is a C'* function) the Levi form changes as
L; = ALy (hence the analogy among CR and conformal geometry). In
particular the pair (r, s) is a CR invariant (referred to as the signature
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of the CR manifold M). The real Levi form Gy has signature (27, 2s).
As T(M) = H(M) @& RT the real Levi form Gy admits a natural con-
traction gy given by

99(X7 Y) = GH(Xa Y), gg(X, T) = 07 g9(T7 T) = 17

for any X,Y € H(M). Then gy (the Webster metric of (M,0)) is a
semi-Riemannian metric of signature (2r 4+ 1,2s). When M is strictly
pseudoconvex (i.e. Ly is positive definite for some 6) (M, H(M), Gy) is
a sub-Riemannian manifold (in the sense of [55]) and gy is a Riemannian
metric on M. In particular M admits two natural distance functions
d,dg : M x M — [0, 400) where d is associated to the Webster metric
(cf. e.g. [37], Vol. I, p. 157-158) while dp is the Carnot-Carathéodory
metric associated to the sub-Riemannian structure (H (M), Gy). The
Carnot-Charathéodory distance among two points is measured by em-
ploying curves tangent to H (M) only hence d(z,y) < dy(x,y) for any
x,y € M (thus justifying the use of the term contraction in the de-
scription of the Webster metric).

2.2. Horizontal gradients, Tanaka-Webster connection. The hor-
izontal gradient of a function u € C*(M) is given by VHu = 11y Vu

where Iy : T(M) — H(M) is the projection relative to the direct

sum decomposition T(M) = H(M) & RT and go(Vu, X) = X (u) for

any X € X(M). The Tanaka-Webster connection is the unique linear

connection V on (M, 0) satisfying i) H(M) is V-parallel, ii) Vgy = 0

and V.J = 0, iii) the torsion tensor field Ty is pure i.e.

Tv(Z,W) =0, To(Z,W)=2iLy(Z,W)T,

for any Z, W € T} o(M) and 7o J + J o7 = 0. The same symbol J
denotes the extension of J : H(M) — H(M) to an endomorphism of
the tangent bundle by requiring that JT' = 0. Also 7(X) = T (T, X)
for any X € X(M) (7 is the pseudohermitian torsion of V). The
divergence operator div : X(M) — C*°(M) is meant with respect to the
volume form Uy = G A (df)™ i.e. LxVy = div(X) ¥y for any X € X(M)
where £ denotes Lie derivative. The sublaplacian is the formally self-
adjoint, second order, degenerate elliptic operator A, given by Ayu =
—div (V7u) for any u € C*(M). For further use we set A(X,Y) =
go(X,7Y) for any X, Y € X(M). By a result of S.M. Webster, [57], A

is symmetric.

Example 1. (Siegel-Fefferman domains) For each § > 0 let ps(z, w) =
Im(w) — |z|> — § Re(w) |z|*. We consider the family of domains 5 =
{(z,w) € C?: ps(z,w) > 0} so that Qq is the Siegel domain while
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was introduced in [22] (cf. also [10], p. 164). Each boundary 0€; is a
CR manifold, of CR dimension 1, with the CR structure

T1’0<895) = [T(@Q(;) ® (C] N Tl,O(C2)

induced by the complex structure of C?. A (global) frame of T} o(9s) is
7 = 0/02—27% Fy 0/0w where Fy(z,w) = [1 + 6|z[*(w +w)] [6]z|* +i]
hence the Levi form is
55 — 1 &]Pp-1 5112 _
g1 = 00ps (Z,7) = §+m [1+ 0]z (w + )] .

Let Ls = {(z,w) € 0Qs : g;7 = 0} (the null locus of the Levi form) so
that Lo =@ and Ls ~ C\ S* (67/*) for any 6 > 0. Here S*(r) C C is
the circle of radius 7 and center the origin. Indeed let £s C C be the
line of equation v = u 4 6~%/2. Then Ls consists of all (z,u + iv) €
9Qs \ [S* (67/*) x £5] such that

1 EE
w= g gt = 1] o= EE Dt +1]

and @5(r) = (6%r® + 1) / (6°r® — 1) for any r € [0,400)\ {07/*}. Next
M;s = 095 \ Ls is a strictly pseudoconvex CR manifold with two con-
nected components M (Si on which the Levi form Ly, is respectively
positive and negative definite (here 65 = £(0 — 9)ps). O

Let RV be the curvature tensor field of the Tanaka-Webster connec-
tion of (M, 0) and let us set

Ric(X,Y) = trace {Z € T(M) — RY(Z,Y)X }.

If {T,, : 1 < a <n}isalocal frame of Ty o(M) then R 5 = Ric(Ty, Tj)
is the pseudohermitian Riccitensor. We also set g,5 = Lo(T, , Tj) (the
local coefficients of the Levi form) and [¢*°] = [g,5]™". The pseudoher-
matian scalar curvature is p = gaﬁRaB. A nondegenerate pseudohermi-
tian manifold (M, 0) is (globally) pseudo-Einstein if R,5 = (p/n) g,5-
The sphere S?"™! (carrying the standard contact form, cf. e.g. [19], p.
60) is pseudo-Einstein.

Example 2. (Grauert tubes) Let (V,g) be a compact connected C*
Riemannian manifold and 7V = {& € T*(V) : g*(£, )% < €}.
There is €y > 0 such that 7"V admits a canonical complex structure
and M, = 0TV is a strictly pseudoconvex CR manifold for every
0 <e<e (cf [26]). Let ¢(v) = |v]2 be the squared g-length function
and 0, = ¢} (—Imgqﬁ) where ¢, is the inclusion. If V' is a harmonic

manifold (in the sense of [7]) then each (M., 6.) is pseudo-Einstein (cf.
[54], p. 394). O
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Let M C C? be a nondegenerate real hypersurface. A curve v in M
is a chain if for each point p €  there is an open set U C M and a
local biholomorphism ® : Q@ € C* — ®(Q) C C? defined on an open
set €2 D U such that p € U and

OU) ={(z,u+iv) € ®(Q):v=|2]*+ Z Frj(u) 2"z},
k,j>2
for some functions Fj;(u) such that Fiy(u) = 0 and ®(yNU) lies on
the u-axis (cf. e.g. [33], p. 85). The family of chains is a CR invariant.
Chains on 9Q = {(z,u +iv) € C? : v = |2|?} are the intersections
of 09 with complex lines (cf. Theorem 2 in [33], p. 85). By a result
of C. Fefferman, [22], there is an infinite family of chains on M| (the
connected component of 9; \ L; containing the origin) which spiral

to the origin and the origin is the only spiral point on M; (cf. also
Theorem 4.15 in [10], p. 164).

3. FEFFERMAN SPACE-TIMES

3.1. Canonical bundle, Fefferman metric. Let (M, T} ,(M)) be a
CR manifold of CR dimension n. A complex valued differential p-form
won M is a (p,0)-form if Ty (M)]w = 0. Let AP°(M) — M be
the relevant bundle i.e. C° sections in AP°(M) are the (p,0)-forms.
Let Rt = (0,4+00) be the multiplicative positive reals and C(M) =
[A™TEO(M) \ (0)] /R*T. Then C(M) is the total space of a principal S*-
bundle 7 : C(M) — M (the canonical circle bundle, cf. e.g. [19], p.
119). From now on we assume that M is nondegenerate of signature
(r,s). For each contact form 6 on M there is a semi-Riemannian metric
Fyon C(M) (the Fefferman metric of (M, 0)) of signature (2r+1,2s+1)
expressed by

(1) Fy=m"Gy+2(7*0) © o

where 0 € C°(T*(C(M))) is a connection 1-form in S* — C'(M) — M
determined by the contact form 6 (cf. (2.31) in [19], p. 129, and (2.8) in
[27], p. 857). Also Gy is the extension of Gy to T'(M) got by requiring
that Gy(T,X) = 0 for any X € X(M). Throughout we adopt the
notations and conventions in [41]. However a review of the approach
in [41] (or [19], p. 122-131) shows that strict pseudoconvexity of M as

required in [41] may be relaxed to nondegeneracy. The connection form
o may be explicitly computed in terms of pseudohermitian invariants

(cf. [41))

1 . i .3 0
2 = - * a__ Oéﬁ o .
() o n+2{d7+7r (W”‘ 29 49a5 4(n+1)9)}
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Here v : 771(U) — R is a local fibre coordinate on C'(M) i.e. given
a local frame {7, : 1 < a < n} of T (M) defined on the open set
UC M let {6*:1 < o < n} be the corresponding adapted coframe;
if c = [w] € 7 YU) (brackets indicate classes mod S!) then w =
AONGEA---NO™), for some A € C\ {0} and v(c) = arg(\/|)\]) where
arg : ST — [0, 2m).

Let us set 9 = C(M) for simplicity. Let S € X(9) be the tangent
to the St action i.e. locally S = [(n + 2)/2]9/dv. Then Fy(S,S) =0
ie. S is null (or lightlike). By a result in [27] LsFy = 0 (S is a
Killing vector field). Also Ricg,(S,S) =n/2and S |Wg, =5 |Cp =0
where Ricg,, Wg, and CF, are respectively the Ricci, Weyl and Cotton
tensor fields of (9, Fy). Viceversa (again by a result in [27]) any semi-
Riemannian metric F' of signature (2r + 1,2s + 1) on a manifold 9t
may be realized locally as the Fefferman metric associated to some
contact form on the (locally defined) quotient M = 9t/S provided that
F admits a null Killing vector field S such that Ricg(S,S) > 0 and
S|Wgp=2S]Cp =0 (cf. Theorem 3.1 in [27], p. 860). An obstruction
to the global statement may be pinned down as a cohomology class in
H'(M,S") (when 90 is the total space of a principal S'-bundle over a
(2n + 1)-dimensional manifold M, cf. Theorem 4.1 in [27], p. 872). By
a result in [41] none of the Fefferman metrics

(3) Fo=¢"Fy, feCO®(M),

is Einstein yet (by a result in [43]) if 6 is pseudo-Einstein and transver-
sally symmetric then Fj is locally conformal to an Einstein metric (how-
ever the conformal factor depends on the local fibre coordinate). Equal-
ity (3) holds by Theorem 2.3 in [19], p. 128. In particular the restricted
conformal class [Fy] = {e/"Fp : f € C°>°(M)} is a CR invariant.

3.2. Causality theory. Let M be strictly pseudoconvex i.e. the Levi
form Gy is positive definite (s = 0) for some 6. Let T € X(9M) be the
horizontal lift of the Reeb vector with respect to o i.e. T € Ker(o),
and (d.m)T) = Tr( for any ¢ € M. The tangent vector field T —
S is timelike hence the Lorentzian manifold (90, Fy) is time-oriented.
Therefore 9 is a space-time, referred to hereafter as the Fefferman
space-time. As to causality theory on the space-time (I, Fy, TT — S)
one adopts the conventions in [5]. Given ¢, € 9 we write ¢ << ¢
(respectively ¢ < ¢) if there is a smooth future-directed timelike curve
(respectively if either ¢ = ¢’ or there is a future-directed nonspacelike
curve) from ¢ to ¢. The chronological future/past (respectively causal
future/past) of ¢ € M is denoted by IF(c) (respectively J*(c)) and

Itle)={deM:c<<d}, T (c)={deM:cel()},
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JHe)y={deM:c<}, J(c)={deM:ce ()}
The subsets I*(c) C 90 are known to be open (while J*(c) are neither
open nor closed, in general). The space-time 9 is chronological (re-
spectively causal) if ¢ & I1(c) (respectively if ¢ € J*(c)) for any ¢ € .
If M is compact (e.g. M = S*"*1 C C"*!) then 9 is neither causal
nor chronological. Indeed if this the case then 90t is compact hence (by
Proposition 2.6 in [5], p. 23) 2 contains a closed timelike curve.

Let a : [a,b] — 9 be a curve in M. A point ¢ € M is the endpoint
of a corresponding® to t = b if lim; ;- a(t) = c. If a: [a,b] — M is a
future (respectively past) directed nonspacelike curve with endpoint ¢
corresponding to t = b then the point ¢ is a future (respectively past)
endpoint of a. A nonspacelike curve in 9 is future (respectively past)
inextensible if it has no future (respectively past) endpoint. Given a
space-time N a Cauchy surface is a subset ¥ C I such that every
inextensible nonspacelike curve intersects > exactly once. Moreover
N is globally hyperbolic if the intersection of causal future and past of
arbitrary points is a compact set. The Alexandrov topology on M is the
topology Agn generated by the basis of open sets {I*(c)NI~(¢') : ¢, €
M}. The Alexandrov topology on M is the topology Ay consisting of
all sets U C M such that 771(U) € Agy.

Proposition 1.

i) The Fefferman space-time 9 admits closed null curves and hence MM
s not causal. A fortiori 9 cannot be distinguishing, strongly causal,
stably causal, causally continuous, causally simple or globally hyper-
bolic. In particular M admits no Cauchy surface.

ii) The chronological and causal future/past maps ¢ € M — [F(c) C M
and ¢ € M — J*(c) C M are constant on the fibres of w: 9IM — M.
iii) The Alexandrov topology Asn doesn’t agree with the topology of M
as a manifold. The Alexandrov topology Ay is strictly contained in the
quotient topology.

Proof. i) Let ¢ € M with w(c) = € M. Then « : [0,1] — M,
a(t) = e*™c, 0 <t < 1, is a smooth closed null curve in 9 hence
9N is not causal. Actually « is contained in the fibre 7(z) hence
it is a (closed) null geodesic of M. The listed features of M imply
one another (in reversed order, cf. e.g. [5], p. 32) and all imply
causality. Inexistence of Cauchy surfaces in 991 then follows by the
classical characterization of global hyperbolicity in [29], p. 211-212.

5The question whether the definition should be formulated with an interval of
the form [a, b] or [a, b) is of course immaterial (the existence of lim;_,;— «(t) depends
on the topology of M whether «(b) is defined or not).
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ii) Let ¢,d € n7(z) and ¢’ € I'*(c). The circle action is transitive
along the fibres hence ¢ = e*c¢ for some (unique) ¢ € [0,27). Let
B :]0,1] — 9 be given by ((t) = e'c for any 0 < ¢t < 1. Let
0 < to < 1 and (U,z?) a local coordinate system on M such that
(to — 6,0 +0) C [0,1] and B(t) € 7 Y(U) for all |t — ty] < ¢ and
some 6 > 0. We may assume that U also carries an adapted coframe
{°:1<a<n} Ifc=[A(OAO A---AO") ] then 24(B(t)) = 24(z)
and v(6(t)) = arg(A/|A|) + tp + 2nN(t) for some continuous function
N : (to—0,to+9) — Z so that for § > 0 sufficiently small N is constant.
Thus ((to) = ¢ (0/9) A(t) hence 3 is nonspacelike (actually null). Also

: p
Fo (1) <(TT =5) gy - 5@0)) T

i.e. (3 is past directed and then ¢ < ¢. Together with ¢ << ¢’ this
implies (cf. [5], p. 22) ¢ << ¢ and then ¢’ € I7(¢) thus yielding
It(c) C It(d). The roles of ¢, are interchangeable so the opposite
inclusion holds too. Let ¢’ € I (¢) so that ¢’ << ¢. Yet (by the proof
of the statement on the chronological future map) ¢ < ¢ hence ¢’ << ¢
i.e. ¢ € I"(c). Finally the causal future/past maps J* are constant
on the fibres of m due to the transitivity of <.

iii) Since M is not strongly causal its topology as a manifold contains
strictly the Alexandrov topology. Q.e.d.

3.3. Global differential geometry on (91, Fy). We shall need the
following lemma (cf. [2]) relating the Levi-Civita connection D of
(M, Fy) to the Tanaka-Webster connection V of (M, 0).

Lemma 1. For any X,Y € H(M)
(4) D1 YT = (V) — (dO)(X,Y)T" — (A(X,Y) + (do)(XT,YT))S,

(5) DxiT! = (71X + ¢X)',

(6) Dpi X' = (VX +¢X)" +2(do) (X", TS,
(7) DxiS = DgX" = (JX)T,

(8) DT =V'!, DgS =0, DsT'= DS =0,

where ¢ : H(M) — H(M) is given by Go(¢pX,Y) = (do)(XT,YT), and
V € H(M) is given by Go(V,Y) = 2(do) (T, YT).

Exterior differentiation of (2) leads to

i _
Ndo=r{idw,* — —dg*’ Ndg.- — ———d
(n+2)do = n*{idw, 5 @9 N ag,z W+ 1)
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Using the identities dg,5 = gayws” +wag,5 (a consequence of Vgy = 0)
and dg*® = —¢"P¢°?dg,, (a consequence of g*? 95, = 05) one derives
dg®? A dg,5 = Wap N W 4+ wag Aw™ = 0.
Also (cf. e.g. [19])
dwe® = Ry 0N N O + (WS 00 — W 0F) A O

where R,z is the pseudohermitian Ricci curvature and W, (respec-
tively W) are certain contractions of covariant derivatives of A%.

Consequently

(n+2)Go(6X,Y) = i(R,56" ANOP)(X,Y) — ﬁ (dO)(X,Y)

for any X, Y € H(M) or
_ 7 _ _
© =g (Raﬁ——p >g°‘ﬁ), 7 = 0.

2(n+2) 2(n+1
Similarly
_ 1
— a gp a A o
(1 2) Go(V2Y) = i (W 07 = W2 0%) (V) = 5t V)
for any Y € H(M) or
1 3 1
10 Ve = WLg™ — ————p* .
(10) n+2(Z 257 2(n+1)p)

Let M C C? be a nondegenerate real hypersurface and # a contact form
on M. Each chain of M is the projection via w : C(M) — M of some
null geodesic of a metric in the restricted conformal class [Fp] (cf. [11]).
However not all null geodesics of [Fy] project on chains. For example,
a fibre of 7 is easily seen to be a null geodesic and its projection on M
is a point. A null chain is the projection on M of a nonvertical null
geodesic which is orthogonal to S. By a result of L.K. Koch every null
geodesic of projects either to a point, or to a null chain, or to a chain of
M (cf. Proposition 3.2 in [38], p. 250). If M is strictly pseudoconvex
then all nonvertical null geodesics project to the chains of M.

4. BUNDLE COMPLETION OF CR MANIFOLDS

4.1. The Schmidt metric. Let M be a strictly pseudoconvex CR
manifold, of CR dimension n, and let # be a contact form on M
such that Gy is positive definite. Let Fy be the Fefferman metric on
M = C(M) and let D be the Levi-Civita connection of (90, Fy). Let
[T, : L(M) — M be the principal GL(m,R)-bundle of linear frames
tangent to 9 where m = 2n + 2. A tangent vector w € T,(L(9MN))
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is D-horizontal if there is a Ct curve 7 : (=4,6) — L(9M) such that
7(0) = w and ¥(0) = w and if v(t) = (« ( ), {Xja @ :1<j<m}) then
(DaXj) oy = 0 for any [¢t] < 4. Let Iy, € T,,(L(90)) be the subspace of
all D-horizontal tangent vectors. Then

(11) T.(L(M)) =Ty & Ker(duIlr), (duRa)lu =Tua,

for any u € L(M) and a € GL(m,R) i.e. T is a connection-distribution
on L(M). For any left-invariant vector field A € gl(m,R) let A* €
X(L(9M)) be the corresponding fundamental vector field ie. Af =
(deLy)A. where e = [52}1<w<m € GL(m,R). Also the map L,
GL(m,R) — L(9M) is given by L,(a) = ua for any a € GL(m,R).
Let {E!:1 <4i,j < m} be the canonical basis of gl(m,R) ~ R™ . If
vy, » T, (L)) — Ker(d,I1) is the projection associated to the decom-
position (11) then let w} € C(T*(L(9M))) be the differential 1-forms
determined by

(wh) (X)) (B]), =vu(X), X €T, (L)), ue LO).
Then w = w§®Eij € C(T*(L(9M))®gl(m,R)) is the connection 1-form
of (M, Fy). Let Ilp : O(9M) — M be the principal O(1, m—1)-bundle of
Fy-orthonormal frames tangent to 9, where O(1,m — 1) C GL(m, R)
is the Lorentz group. Then DF, = 0 implies that ', C T,(O(9M))
for any v € O(M) and j*w € C®°(T*(O(M)) ® o(1,m — 1)) ie. wis
actually o(1,m — 1)-valued, where j : O(9) — L(9M) is the inclusion.
In classical language (cf. e.g. [37], Vol. I, p. 83) w is reducible to a
connection form on O(9M).

Let B(e;) € X(O(9M)) be the standard horizontal lift associated to
e; where {e; : 1 <i < m} is the canonical linear basis in R™. That is
B(ei)y € T,(O(M)) and (d,I1p)B(e;)y = X; for any u = (¢, {X; : 1 <
J < m}) e OM) with ¢ = Ilp(u) € M. Then {B(e;) : 1 < i < m}
is a (global) frame of I (thought of as a connection in O(1,m — 1) —
O(M) — M). Next let {E, : 1 <a </} Co(l,m—1) be an arbitrary
linear basis in the Lie algebra of the Lorentz group (¢ = m(m —1)/2)
so that (E,)" is a (global) frame of Ker(dIlp). Given u € O(9M) and
X, Y € T,(O(M)) we set

m+4

(12) Yul(X, V) =) XAy

where X = X'B(e;), + X" (E,); and Y = Y7 B(e;), + Y™ (Eg)".
We essentially follow the conventions in [34], p. 898 (itself based on the
presentation in [29]). The original construction in [50] was to consider
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the canonical 1-form n € C®(T*(L(9M)) ® R™) given by 7, = u™' o
(d,I1) for any u € L(9M) and set

(13) 9u(X,Y) = wu(X) - wu (V) + 0u(X) - 0u(Y)

for any X,Y € T,(L(9M)) and any uw € L(M). Cf. (3.1) in [50], p.
274 (or [14], p. 421). The dot products in (13) are respectively the
Euclidean inner products in R™ and R™. The very definitions yield®

J'g9=".

4.2. The distance function. As M is oriented so is 9 hence L(IN)
has two connected components. Let LT (9%) be one of the connected
components (an element v € LT(9M) is a positively oriented linear
frame) so that Ip+ = g [+ gn : LF(90) — M) is a GLT (m)-principal
bundle [here GL*(m) is the connected component of the identity in
GL(m,R)]. The approach in [50] was to consider the distance function
dy : LT (M) — [0,400) associated to the Riemannian metric g and
take the Cauchy completion L+(901) of the (generally incomplete) met-
ric space (LT (9M),d,). Then L*(IM) is a complete metric space with
the metric c_lg given by

d,(u,v) = lim dy(u, , v,)

where {u,},>1 and {v,},>; are Cauchy sequences in (L1 (9M), d) repre-
senting u,v € L+(9M). Also the action of GL*(m) on LT(9M) extends
to an action of GL™ (m) as a topological group on L+ (90). The quotient
L+(OM)/GL"(m) is then the b-completion of M (cf. [50], p. 274-275).
However the work in [24] shows that any G-structure on 9t (in the sense
of [13]) to which w reduces, with G C GL(m,R) a closed subgroup,
leads (by following essentially Schmidt’s construction [50]) to the same
completion (up to a homeomorphism). In particular let O*(1,m—1) be
the component of the identity in O(1,m —1) and O (91) a component
of O(M) so that o+ : O (M) — M is a principal OT (1, m—1)-bundle.
Let d, : OT(9M) x OF(M) — [0, +00) be the distance function associ-
ated to the Riemannian metric y and O+ (9) the Cauchy completion of
(O*(9M),d,). Then M = O+(M)/O*(1,m — 1) is (homeomorphic to)
the b-completion of M. For our purposes in this paper (as to building
a b-completion and b-boundary for a CR manifold) we need

6This doesn’t follow, as the reader should be aware, from a special choice of basis
but rather from the fact that the identification with R™", and therefore the (first)
dot product in (13), is relative to the chosen basis.
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Lemma 2. There is a natural free action of OT(1,m — 1) x St on
O (M) such that p = wolp+ : OT (M) — M is a principal bundle.
Let S be the tangent to the S'-action on M. Then

(14) Ker(d,p) = Ker(d,Ilp+) @RS, w € OT (M),

where ST € X(O*(9M)) is the T-horizontal lift of S. Also if we set
By = (d,Tp+ : Ty — T.(O)) ™" and

(15) (o), = BuKer(o.), ue O (M), c=Tp+(u) €M,
then

for anyu € OT(M) and k € O (1,m—1)x S i.e. T'(0) is a connection
in Ot (M) L M. For each (a,¢) € OF(1,m — 1) x S* the right trans-
lation Ry : OF(OM) — O (M) is uniformly continuous with respect
to d,.

Proof. We set G = O"(1,m — 1) x S! for simplicity. For each
¢ € S! the right translation R¢ : 91 — 9 induces a diffeomorphism
R; : L(9M) — L(M) given by

Re(u) = (Re(c), {(deRo)X;: 1< j <m})
for any linear frame u = (¢, {X; : 1 < j < m}) € L(M). Continuity
and S' C Isom(9, Fy) (cf. [41]) then imply R, [OF(9)] = OF(M). So
O™ (9M) admits a natural S'-action. As it will be seen shortly the two
actions commute i.e.

R,oR;=R;oR,, acO"(1,m—1), (€S

The product group G acts on O (M) by u - (a,¢) = Ru(R¢(u)). To
check (14) note first that

Ker(d,Io+) NRS! ¢ Ker(d,Ilp+) N T, = (0)

hence the sum Ker(d,ITp+) + RS] is direct. Moreover if X € Ker(d,p)
then (d,Ilp+)X € Ker(d.m) ie. (duIlp+)X = AS. for some A € R.
Let us set Y = X — AS] € T,,(O"(9M)). Then (d,I1p+)Y = 0 hence
Ker(d,Ip+) ® RS! C Ker(d,p) and (14) follows by comparing dimen-
sions.

Let X € I'(0), N Ker(d,p) so that X = 3,Y for some Y € Ker(o.)
and Ker(d.m) 3 (d,I1p+)X = (d,I1p+)5,Y =Y hence Y € Ker(o.) N
Ker(d.m) = (0). So the sum I'(o0), + Ker(d,p) is direct and again a
mere inspection of dimensions leads to the first formula in (16). To
check the second formula let k£ = (a,() € G. As I"is OF(1,m — 1)-
invariant (d,R,) © B, = Bua. Also Ilp+ o RC = R o Ilp+, chain rule,
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and the Sl-invariancg of I' (as established later in this proof) yield
Biew © (deRe) = (duRe) © By Thus

(duRi)D(0)u = (dua o) (duRa) BuKer (o) =

= (duaRC)ﬁuaKer(JC) = 6R4(ua)(chC)Ker(UC) =
= 5R<(ua)Ker(gR§(c)) = F(g)u/i‘ :

If ¢ = [w] €M for some w € A"™O(M), \ {0} then R(c) = [Cw].
Let (vw/) = (z4,7) : 7 1(U) — R be the local coordinate system
on M induced by (U,z4) (a local coordinate system on M). Here
u™ =~ and the range of indices is 4, j,--- € {1,--- ,m}and A, B,--- €
{1,---,2n 4+ 1}. If R =« o R, then

RA(c) =u(c), R™(c)=arg(¢MA), c=u]en (V).

Thus R™ = v + arg(¢) + 2Nx for some continuous function N :
7 Y(U) — Z. Consequently OR//0uF = & on a sufficiently small
neighborhood of each point ¢ € 7#71(U). In particular Fj; o Re = F;
there so that T, o R, = ', (here I'}, are the Christoffel symbols of
Fy). It follows that

0 ; p O
(17) % - (ij o HL) XE a—)(é.,
are S'-invariant (on a neighborhood of each point in L(91)). Here
(u”, X7}) are the naturally induced local coordinates on L(90) and (17)

is a local frame of T' defined on the open set II;'(U). Therefore
(18) (duR)Ty =Tg . uwe L), ¢es

For each £ € R™ let B(§) € X(L(9)) be the standard horizontal vector
field associated to £&. We shall need

(19) Rin=mn, (d.R)A, = A*Rc(u)

for any ¢ € S', uw € L(9M) and A € gl(m,R) (cf. e.g. [13], p. 16). As
a consequence of (18) the tangent vector (d,R¢)B(€), — B(&) g, 18
horizontal. On the other hand (by the first relation in (19)) the same
vector is also vertical hence

(20) (duR)B(E)u = B(O)pepuy» € ER™
Note that {w;», ' :1<4,j<m} and {(E;yk , Blej) :1<4,j <m}
are dual. Hence (by (20) and the second relation in (19)) Riw! = wi

and Ran = 1. In particular S* C Isom(L(9M), g) and then S' C
Isom(O(9M), 7). Combining this with a result of R.A. Johnson (cf.

1<j<m,



16 B-COMPLETION OF PSEUDOHERMITIAN MANIFOLDS

Lemma 1.2 in [34], p. 898) it follows that for any compact subset
K C O*(1,m — 1) there are constants a > 0 and 3 > 0 such that

ady(u,v) < dy(Rag)(); Rag)(v)) < Bdy(u,v)

for any u,v € O (9M) and any (a,¢) € K x S'. In particular R, ) is
uniformly continuous. Q.e.d.

4.3. b-Completion, b-boundary. We come now to the central no-
tions in this paper. By Lemma 2 each right translation R, ) extends

uniquely to a uniformly continuous map R.¢) : OF(9M) — O+ (M)
hence G = OT(1,m — 1) x St acts as a topological group on O+(9M).
Let M = O+(M)/G and p : OF(M) — M be respectively the quo-
tient space and projection. We endow M with the quotient topol-
ogy i.e. the finest topology in which p is continuous. The injection
O* (M) — OF(M) induces an injection M = OF(IM)/G — M and we
set M = M\ M. Then M and M are referred to as the b-completion
and b-boundary of M with respect to (T10(M),0). Also we say M is
b-complete if M = () (otherwise M is b-incomplete). A few elementary
topological properties of the b-completion M are listed in the following

Theorem 1. Let M be a strictly pseudoconvexr CR manifold and 0 a
contact form on M with Gy positive definite. Let Fy be the Fefferman
metric on MM = C(M) and let d., be the corresponding distance function
on OF(IM). Let M = O+(M)/[OF(1,m — 1) x S| be the b-completion
of (M,0). Then

1) G=0%(1,m—1) x S! acts transitively on the fibres of p.

ii) p is an open map.

iii) Let x € M and let us endow the fibre p~t(x) with the metric
induced by the b-metric v. Then p~'(x) is complete.

iv) Let us set p(z,y) = inf{d,(u,v) : v € p~Yz), v € p~L(y)}.
Then p is a semi-metric on M and the p-topology is contained in the
quotient topology.

v) If (OT (M), d,) is a complete metric space and if p is metric then
(M, p) is complete.

vi) If the orbits of G are not closed in OF(9M) then M is not T},

vii) M is Hausdorff if and only if graph (G) is closed in O+ (M) x
O+ (oMm).

viil) Let {u,},>1 C OT(M) be a Cauchy sequence without limit in
Ot (IM). Let us assume that there is a compact subset K C M such
that {p(u,)}v>1 C K. Then p~'(xg) is incomplete with respect to d.,
for some xo € M. Consequently M is at most Tp.
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Proof. The proofs are imitative of [20] and [50]. (i) is immediate.

(i) Let U C M be an open set. For each k € G the right translation
Ry : OF(M) — O+(IM) is a homeomorphism so U = Rp-1Ri(U) is
open and hence Ry(U) is open. Transitivity of G on the fibres of p
implies 5~ (B(U)) = Upeq Br(U). Hence B(U) is open in M.

(iii) The fibre p~!(z) carries the metric vy, = ¢t*y where ¢ : p~1(x) —
O1 (M) is the inclusion. Therefore the associated distance function
d,, is computed by taking the greatest lower bound over lengths of
piecewise C! curves contained in p~'(z) (rather than restricting d. to
pt(z) x p~'(x)). Let {u,},>1 be a Cauchy sequence in (p~*(z),d,,).
For any € > 0 there is v, > 1 such that

dy(uy, uy) < dy (uy, uy) <€, v, 1> v,

ie. {u,},>1 is Cauchy in (OT(IM),d,) as well. Let v = lim, . u, €
O+ (M) be the corresponding class of equivalence and let us set y =
pu) € M. If y = x then u € p~Y(x) = p~!(x) (fibres of p and p
over points of M coincide). The possibility y # x may be ruled out
as follows. If that is the case then p~!(x) and p~!(y) are disjoint sets
hence r = d,(u,p~*(z)) > 0. Then the open ball By (u,r/2) ={v €
O+ (M) : d,(u,v) < r/2} contains u yet doesn’t meet p~!(z). Hence
{uy}r>1 doesn’t meet By (u,r/2) in contradiction with the convergence
of {uu}uzl to wu.

(iv) For notions and results in general topology we rely on [61].
Clearly p is a semi-metric on M. It determines a topology on M for
which the cells N(xz,¢) = {y € M : p(z,y) < €} form a basis of open
sets. The quotient topology is the family of sets

{Uc M :p YU) is open in OF(M)}.

The quotient topology contains the p-topology because p is continuous
in the p-topology. Indeed let uy € O (M) and zo = p(uy) € M. Given
an arbitrary cell N(z,€) let 0 < r < e. Then for any u € N(ug, )

e > 1> d,(u,u0) > d,(p (¢),p " (w0)) = ple, x0)

where = = p(c).

(v) Here M is thought of as a metric space carrying the distance
function induced by p. Let {z,},>1 be a Cauchy sequence in (M, p).
There is a subsequence {y,},>1 of {z,},>1 such that

1 12
o, )< =] , v>1
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That is d,(p~ (), P  (Yu11)) < (1/2)” hence for each v > 1 one may
choose u, € p~*(y,) such that d,(u, , u,11) < (1/2)”. Consequently

© 1 v4i—1 1 v—1
d’y(uya ul/+,u) S Z (5) < (5)

i=1

so that {u,},>1 is Cauchy in (O*(9M),d). By assumption the space
(01 (M), d,) is complete so there is a unique uy, € OT (M) such that
lim, o Uy = Uso. Let Yoo = p(tsn) € M. Finally

P(Ys Yoo) = Ay (0 (1), D (Yoo)) < (U, une) — 0, v — 00,

so that {z,},>1 is convergent (as a Cauchy sequence containing a con-
vergent subsequence).

(vi) Let us assume that M is T} hence the singleton {z} C M is
closed for any 2 € M. Thus M\ {z} is open so that O+ (9M)\p *(z) =
pt (M \ {z}) is open i.e. p~*(z) is closed in O+(M).

(vii) Let G = graph (G) be the graph of the G-action on O+ ()
ie. G ={(u,Ri(uw) :u € OF(M), k€ G}. We assume that M is
Hausdorff and consider a point (u,v) € OF(OM) x OF(M) \ G. Let
x = p(u) and y = p(v) so that  # y (if + = y then w and v are
equivalent mod G i.e. (z,y) lies on G). As M is Ty there exist open
sets U C M and V € M suchthat x € U,y € Vand UNV = 0.
Thus p~1(U) x p~1(V) is an open neighborhood of (u,v) contained
in Ot(M) x O+(M) \ G i.e. (u,v) is an interior point. To prove
sufficiency we assume that G is closed and consider z,y € M with
r#y. Let u € p~!(z) and v € p~*(y) so that u,v are not equivalent
mod G. Thus (u,v) € G i.e. there exist open sets & and V in O+ (M)
such that (u,v) € U x V C OF(M) x OF(9M) \ G. The projection
p: OF (M) — M is an open map (cf. (ii) above) hence U = p(U) and
V =p(V) are open sets in M. Also U NV = () because the G-action is
transitive on the fibres of p.

(viii) As K is a compact set there is a subsequence {v, },>1 of {u, },>1
such that {p(v,)},>1 converges to some = € M. We shall show that
p~!(z) is incomplete with respect to (the restriction to p~(z) x p~!(z)
of) d,. The proof is by contradiction. If C'= p~'(x) is complete then
C' is a closed subset of OT(9M). Also {u,},>1 is not contained in C' (if
it were it would have a limit there). Thus there is 1y > 1 such that
dy(v,, C) > 0 for any v > vy. Let f, : OF(9) — R be defined by
fo(w) = dy(v,, w) for any w € OT(M). Then f, is continuous and C'
closed so that inf,cc f,(w) is realized in C i.e. for each v > 1y there is
w, € C such that d, (v, , w,) = d,(v,, C). Note that p(v,) — x implies
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dy(v,, C) — 0 as v — oco. Then on one hand {w,},>; is Cauchy for
dy(wy , wy) < dy(wy, vy) +dy (v, vp) 4+ dy (v, wy) <€

for any v, 1 > v, and on the other hand d,(v,, w,) — 0 means that
{v,},>1 and {w,},>; are equivalent Cauchy sequences so they must
represent the same point lim, o wy, = lim,_o v, € OF(9) \ O (M)
which implies that C' is not complete. To prove the second statement
in (viii) we shall pin down, under the given assumptions, two elements
x,y € M with x # y such that all open neighborhoods of y contain x
as well. By the first statement in (viii) there is x € M such that p~!(z)
is incomplete with respect to the full metric d. Therefore p~'(x) con-
tains at least a Cauchy sequence {w,},>; without limit there. Let
w = lim,_ow, € OF(M)\ OF(IM). Then w lies on the topological
boundary of p~*(z) (as a subset of O (901)) hence any open neighbor-
hood U of w intersects p~*(z). Let y = p(w) € M. Finally if V. C M
is an arbitrary open neighborhood of y then (V) is an open neigh-
borhood of w hence p (V) Np~'(x) # 0 hence x € V. Q.e.d.

A comment is in order on the perhaps a bit subtle difference between
statements (iii) and (viii) in Theorem 1: ~, is the first fundamental
form of p~!(x) as a submanifold of (OT(9M),~). The distance function
d., (associated to the Riemannian metric +,) and the restriction of d.,
to p~!(z) x p~!(x) do not coincide” in general (completeness in (iii) and
(viii) is relative to distinct distance functions).

An almost werbatim repetition of the arguments in the proofs of
Lemma 2 and Theorem 1 leads to

Corollary 1. The S* action on M extends to a unique uniformly
continuous topological St action on I leaving M invariant. Then
M =9m/S" and M =9M/S*. LetT: M — M and 7 : M — M be the
canonical projections. Then the fibres of T over b-boundary points are
contained in the b-boundary 9 and S* acts transitively on the fibres of
7. The projection T is an open map. If the orbits of St are not closed
in M then M is not Ty. M is Hausdorff if and only if graph(S') is
closed in DM x 9.

"This is of course a general fact in the theory of isometric immersions among
Riemannian manifolds. If j : & — 91 is an immersion of a manifold & into a
Riemannian manifold (91,+) then in general one has but d,(z,y) < d;--(z,y) for
any z,y € 6 (d, measures distances among z,y € & by measuring lengths of
arbitrary piecewise C'! curves joining  and y while d;-~ is "confined” to curves
lying in &).
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Example 3. (Heisenberg group) Let H; = C x R be the Heisenberg
group (cf. e.g. [19], p. 11-12) carrying the CR structure spanned
by L = 0/0z +iz0/0t (L is the unsolvable Lewy operator) and the
contact form 6 = dt 4+ i(zdz — Zdz). The relationship to Example
1 is well known: the map f : H; — 0Qp, f(2,t) = (2, t + i|z]?),
(z,t) € Hy, is a CR isomorphism i.e. a C* diffeomorphism such that
fol = 0/0z — 2ZFy0/0w. The Fefferman metric is then given by

2
Fy=2{dz* +dy’} + g{cht+2(:z;dy—ydac)} ® dy

where z = = + iy and C'(H,) is a 4-dimensional space-time with the
time orientation (9/0t)! — (3/2) &/d~. The horizontal lift is taken with
respect to the connection 1-form (1/3) dvy. The b-completion

H; = O+(C(Hy))/[0%(1,3) x 8" = C(HL)/S"

and b-boundary H1 = H, \ H; are then well deﬁned. The analysis of
Example 3 is completed in §5 where we show that H; = (. O

Example 4. (Penrose’s twistor CR manifold) Let T = (C*,X) be the
twistor space (cf. [46]) i.e.
Z(W):W<? ]02 )Wt, W e C*,
2

(I is the unit 2 X 2 matrix). Let To = {W € T : (W) = 0} so that
Ty is a CR manifold of CR dimension n = 3. The signature of the
Levi form 90%. of Ty is (+ — 0) hence each pseudohermitian structure
0 € C®(H(Ty)") is degenerate®. The methods of pseudohermitian
geometry (cf. [57]) may however be applied to P(Ty) as will be seen
shortly. The projective twistor space is P(T) = (T \ {0}) /(C\{0}). We
set P(Ty) = {[W] € P(T) : W € To\{0}}. Then P(T,) is a CR manifold
(with the CR structure induced by the complex structure on P(T)) and
the projection T\ {0} — P(T) descends to a CR map Ty\ {0} — P(Ty).
Let I = {[W] € P(T) : Wy = Wi} (a projective line). Let A = {v €
R4\ {0} : =02+ 327, v = 0} be the null cone. Let M = (R*,7) be the
Minkowski space i.e. n(x,y) = —zoyo + 25’:1 x;y; for any z,y € R
Given x € M and v € A let N,, = {x+tv :t € R} be the null geodesic
in M of initial data (z,v). Also let Qy = {N,,: 2 €M, ve A} (a
bundle of null cones over M). The fibre (€),, i.e. the set of null
geodesics (light rays) through z, is the field of vision of an observer
situated at x. There is a natural identification P(Ty) \ I ~ €y (cf. [46]
or [19], p. 24).

8L.e. the Levi form Ly has a nontrivial null space.
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Let S' — C(P(Ty)) — P(Ty) be the canonical circle bundle over
P(To). Let us set p(C¢) = G2+ (5 + (1¢5 + ¢1Gs- Let Up = {[W] € P(T) :
Wy # 0} with the canonical complex coordinates ¢ = ({1, (2, (3) so that
P(Ty)NUy is described by p(¢) = 0. Thus T} o(P(Ty)) is locally the span
of Ty = 0/0¢, — (30/0¢ and Ty = 0/9Cs — , 0/0C. Then the local
components of the Levi form are g;7 = g45 = 0 and g5 = go7 = 1/2 (so
that P(T,) is nondegenerate of signature (+—)) hence the Fefferman
metric Fy = W*ég—l—% (7*0) ®dry is a semi-Riemannian metric of index 3
on C(P(Ty)) (here 6 = £(0 — 9)p). The constructions in § 3 generalize
easily to the case where the Fefferman metric is a semi-Riemannian
metric of arbitrary index 2s + 1. Actually the constructions depend
only on D (or more generally only on the full parallelism structure on
O (M) associated to I'(o0), cf. also [16]). If M = P(Ty) \ I (an open
subset of P(Ty)) then its b-completion and b-boundary are

M = O+ (C(M))/[07(3,3) x S'] = C(M)/S*, M =M\ M.

The physical meaning of points in M is unknown. The b-boundary (in
the sense of [50]) of the Minkowski space is known to be empty (M = ).
However as shown in [45], p. 337, each C* function with values in the
Argand plane z : Ml — CU {oo} gives rise to a C'* section s : Ml — g
so that Ml embeds in M. Then M carries the physical field s*gy and
singular points should arise. The Reeb vector of (M N Uy, 0) is T =
1 (8/3(2 - 8/8@) Also {Tl +Tl s T2 +T2, 7 (Tl _Tl) s 1 (T2 —TQ)}
is a local frame of H (M) with respect to which the Webster metric is

01000
10000
gw:l 00010
00100
00001

The problem of relating the b-boundary of M, = (R*, s*gy) to M is
open. Picking up a section s : Ml — )y amounts to choosing smoothly
one light ray in the field of vision (£), over each € M. One may then
start with a C* function v : M — A and set s(z) = {x+tv(z) : t € R}.
Of course the question arises whether a canonical choice of such v is
feasible. For instance, as v : Ml — A may be thought of as a vector field
(of null vectors) tangent to M, one may request that v be an extremal
of some classical action (such as the total bending or biegung, cf. e.g.
[60], in one of its known Lorentzian generalizations, cf. e.g. [25] or
[18]). Cf. also [6]. Let us consider a C* function A : Ml — R\ {1} and
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s:M — P(Ty) \ {I} given by

@) s(a)= m(@),%

Then X(s(x)) =0 and s(z) € [ <= A(z) =1 i.e. s(x) is well defined.
Note that z = 1+4\ : Ml — C is the function required by the approach
in [45]. The study of the geometry of the second fundamental form
of (21) is open. A knowledge of that is likely to lead to an useful

relationship among M, and P(T,) \ I. O

(LA(z))o(z)|, =M.

5. b-INCOMPLETE CURVES

5.1. Bundle length, b-incomplete curves. Let I C R be a bounded
interval such that 0 € I. According to [50] (slightly reformulated with
O™ replacing L™) a curve ¢ : I — 9 is said to have finite bundle length
if there is u € OT(9M) such that the I'-horizontal lift ¢* : I — OT (M)

issuing at u has finite length with respect to the b-metric v i.e.

L(c*) = /1

Here [|£|| is the Euclidean norm of £ € R™. Cf. also [14], p. 43T.
A curve ¢ : [0,1) — M is b-incomplete if it has finite bundle length
and admits no continuous extension to a map [0,1] — M (i.e. cis
inextensible). The relevance of this class of curves consists in the fact
that the b-boundary 90t = M \ M consists precisely of the end points
in 9 of b-incomplete curves in M.

Similar considerations as to the b-boundary M require the connection
I'(o) in G — Ot(M) & M (cf. Lemma 2). We adopt the following
definition. A curve a: I — M has finite b-length if there is u € O™ (9MN)
such that the T'(o)-horizontal lift ' : I — O*(9M) issuing at a!(0) = u
has finite length with respect to the b-metric 7. Also a : [0,1) — M
is b-incomplete if it has finite bundle length and admits no continuous
extension to a map [0, 1] — M.

() re(t)|| dt < oo.

Theorem 2. For any b-incomplete curve «v : [0,1) — M its end point
limy - a(t) exists in M and lies on the b-boundary M. Conversely,
any point on M is an endpoint of some b-incomplete curve.

Proof. As « has finite bundle length there is v € O1(9) such that
the horizontal lift o : [0,1) — OT(9M) with a'(0) = u has finite length
with respect to . Let ¢ = [Ip+ oal : [0,1) — 9. As

(22) al(t) €T(0)arry = BarwKer(oew) C Tary, 0<t <1,
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one has
Yot (@ (8), & (1)) = [nar (&'(1)) |17 = [’ (@) et)])?

and L(a') < oo yields
ty
lim [ [le!(t)""e(t)|| dt = Lo
V—00 0
for some Ly € R and any sequence {t,},>1 C [0, 1) such that lim, .. t, =
1. In particular for any € > 0 there is v, > 1 such that

Lot
/ lad () ()| de| < e
[2%

for any v > v, and any p > 1 ie. {a'(t,)},>1 is a Cauchy sequence
in (OT(M),d,). Let ug € OF (M) be its equivalence class, so that
lim, o a!(t,) = ug in OF(M). Let z9 = p(up) € M. By the continuity
of p one has lim,_ o a(t,) = 2o in M. As a is b-incomplete it must
be that g € M \ M. Viceversa, let T € M and let ¢ € 90 such that
7(¢) = T. By aresult in [50] there is a b-incomplete curve p : [0,1) — I
such that limy_,;-1 p(t) = ¢i.e. its T-horizontal lift p* : [0,1) — OT(IMN)
issuing at some u € II 1 (7(0)) has finite length with respect to 7.
On the other hand if « = mop and ol : [0,1) — OF(M) is the
I'(o)-horizontal lift of « issuing at u then (again by (22) ie. ol is
['(0)-horizontal, and hence I'-horizontal) a! = p* (as two I-horizontal
curves issuing at the same point). Q.e.d.

dy(a!(t,), ol (ty,)) <

5.2. Inextensible Fefferman space-times. A space-time (M, F)) is
an extension of the Fefferman space-time if 90T is an open set in 91 and
V'F = Fy where ¢ : 9t — D is the inclusion. Also (I, Fy) is inexten-
sible if it has no extension. A strictly pseudoconvex pseudohermitian
manifold (M, T o(M), 0) is Fefferman inextensible if the space-time
(M, Fp, T' — S) is inextensible. A CR manifold (N, T} (N)) is an ez-
tension of (M, T1o(M)) if M C N is an open subset and the inclusion
t: M — N is a CR map. Then (M,T,(M)) is referred to as inez-
tensible if it has no extension. If N is an extension of M and O is
a contact form on N then (C(N), Fg) is an extension of (C(M), Fy)
where § = *©. By Proposition 3 below, (C(9€), Fp,) is inextensible.

5.3. Inextensible Reeb flow. Let c: [0, s*) — 90t be an inextensible
smooth timelike curve parametrized by arc length (proper time). By
a result in [15] if s* < oo then ¢ has an endpoint on the b-boundary
M provided that (36) is satisfied. A precise statement and proof are
given in Appendix A. As an application (of the Dodson-Sulley-Williams
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lemma) we demonstrate a class of smooth curves in M having an end-
point on M.

Theorem 3. Let (M,0) be a strictly pseudoconver pseudohermitian

manifold and T its Reeb vector. Then any inextensible integral curve

a: [a,b) = M of T has an endpoint on the b-boundary M provided

that 1) a admits a lift v : [a,b) — M satisfying Y(t) = f(t) (TT — S),y(t)

(a <t < b) for some C* functz’on f i ]a,b) = R\ {0,1} such that
= [" f(r)dr is bounded and ii)

(23) /exp(/ 1V 15 )dt<oo

where s* = lim;_,- ¢(t) and B(s) = a(¢p™(s)) while V € C(H(M))
is given by (10). In particular when (M, 0) is pseudo-FEinstein the same
conclusion holds if (i) is replaced by

s* t
1) [ e ([ 1970l s ) e <o
0 0

where p is the pseudohermitian scalar curvature of 0. Also if M =
S* L (endowed with the canonical contact form) then (ii) is equivalent
to s* < 00.

Proof. Let c(s) = y(¢~'(s)) for any 0 < s < s* so that c: [0,s*) —
I is an inextensible timelike curve, parametrized by arc length, with
s* finite. Then (by Lemma 1)

(D54),qy = ['() (T = S)_y + F(1)°V]

(Ded).qsn = FO72 [(Dii) = S OFO50)]
hence || Deé||cpt)) = ||V ||law) for any a <t < b and Lemma 4 yields
c¢(s*—) € M hence (by Corollary 1) F(s*—) € M.
Moreover if (M, ) is pseudo-Einstein then (cf. [19], p. 298) W, =
(¢/2n) pgz hence (by (10))
IV]1? = 29,5V V7 = Cyy pa p°,
where 2C,, = (2n + 1)?/[n(n + 1)(n + 2)]* (so that (23) and (24) are

equivalent). When M is the odd dimensional sphere (carrying the stan-
dard contact form) the pseudohermitian scalar curvature is constant.

Q.e.d.

Example 5. (Ezample 2 continued) Let (V, g) be a harmonic Rieman-
nian manifold and M, = 0T*V with the contact form 6.. Let T. be
the Reeb vector of (M, 0,) and « : [a,b) — M, an inextensible integral
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curve of T, admitting a lift v : [a,b) — C(M,) as in Theorem 3 and
satisfying (24). Then o has an endpoint on M,. Given a C™ func-
tion f : [a,b) — R\ {0,1} the ODE system () = f(¢) (T" — S)W(t)
admits solutions by standard existence theorems in ODE theory and
their projections on M, are integral curves of 7T,. On the other hand
integral curves of T, are chains (cf. [54], p. 393) (and therefore projec-
tions of null geodesics) thus exhibiting chains which are simultaneously
projections of timelike curves in C'(M,). O

5.4. b-Boundary versus topological boundary. By a result in [51]
for any open set U C 9 with compact closure one has OU C U. The
following CR analog is also true.

Proposition 2. Let U C M be an open subset of a strictly pseu-
doconvex pseudohermitian manifold (M,0) such that its closure U° is
compact in M. Then the topological boundary OU is contained in the
b-boundary U.

Proof. Let x € oU = U° \ U so that x ¢ U by the openness of U.
In particular there is a curve « : [0,1) — U with endpoint x. Let ug €
p ' (a(0)) and let a' : [0,1) — OT(M) be the unique I'(s)-horizontal
lift of v issuing at ug. Then a! has an endpoint u; = lim,_;- a!(t) €
p Y(z) € Ot (7=Y(U)) because U® is compact and p is an open map.
Consequently there is an integer ng > 1 such that o' lies in the ball
By (w1, 1/ng) € O*(7=1(U)). Let us join u; to some point on a' by
a minimizing geodesic p of finite length. Then 7 o p is a b-incomplete
curve in U with endpoint z hence z € U. Q.e.d.

A natural question in [51] is whether (or under which assumptions)
U = U. By aresult in [51] if i C 90 is an open subset such that i) 4
is compact and ii) U contains no trapped® null geodesic then OU = U.
The CR analog to this situation would be to consider an open subset
U C M such that i) U° is compact and ii) U® contains no trapped
chain. The result in [51] doesn’t readily apply to U = 7~ }(U). Indeed
U° is compact (because S is compact) yet U¢ = 71 (U¢) hence U° is a
saturated'® set imprisoning all fibres of 7 over points in U¢ (which are
null-geodesics of Fy).

5.5. b-Boundary points and horizontal curves. The following re-
sult is a CR analog to Theorem 4.2 in [50], p. 276. The proof however
mimics that in [14], p. 461-462.

In the sense of [51], p. 51.
10A union of leaves of the vertical foliation (tangent to S).
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Theorem 4. Let T € M be the point determined by the Cauchy se-
quence {v,},>1 C O (M) i.e. T = orbg(v) where v = lim, ., v, €
O+(OM). There is a Cauchy sequence {u, },>1 lying on a T'(c)-horizontal
curve in O (M) and determining the same b-boundary point T.

Proof. There is a curve v : [0,1) — O*(9M) such that y(¢,) = v,
for some ¢, € [0,1) and any v > 1. There is no # € M such that
v(t) € p~i(z) for all 0 < ¢ < 1. Indeed if it were v C p~!(xg) for some
xo € M then {v,},>1 would have a limit there (by (iii) in Theorem 1
the fibre p~'(x) is complete) instead of O+(MM) \ OF(IM). Let us set
a = povy:[0,1) — M (an inextensible curve). Let ol : [0,1) — OF(9M)
be the unique I'(o)-horizontal lift of « issuing at a!(0) = v; and let us
consider the sequence a'(t,) € O (9M) projecting on x, = p(v,) € M.
As G = OT(1,m — 1) x St acts transitively on fibres for each v > 1
there is a, € G such that R, (a'(t,)) = v, (actually a; = e). Let
Voo = lim,_oo v, € OF(IM) \ OT(IM). Also (as O+ (M) is (97) is complete)
the curve a! has an endpoint ue, = lim,_;- al(t) € O*( )\ O (M)
such that p(us) = plve) = T € M. Let then as € G such that
R, (Uso) = Voo-

By aresult of B.G. Schmidt, [52], O (1, m—1) is closed in GL™ (m, R)
and then G is closed in GL™ (m, R) x S* hence (by the continuity of the
action) lim, . a, = @ in G. Let o : [0,1) — O (M) be the unique
I['(0)-horizontal lift of «v issuing at o*(0) = R,_ (v1) and let us consider
the sequence u, = a*(t,) € OT(IM).

By the general theory of connections in principal bundles (cf. e.g.
[37], Vol. I) right translations by elements of the structure group map
horizontal curves into horizontal curves hence R,__ o a! is a horizontal
curve issuing at the same point as a* and then a* = R, _oal. In
particular u, = R, (a'(¢,)) for any v > 1.

As in the proof of Lemma 2 there is a constant (3(a~) > 0 such that

Ay (Rars (), Ru(v) < Blase) dy(u,0), w0 € O (M)

Also (again by the continuity of the action of G on O+ (91)) one has

lim R -1v, = R a=1 Voo

V—00
hence

dy(uy , uy) = d'Y(‘RaooOéT (), PLaooO‘T (t.) <
< Blae) dy(@l(t,), @l (1)) = Blace) dy(R,p1(v)) ) Ryi(v))

implying that {u,},>1 is a Cauchy sequence with the same limit v, €

O+(M) \ O (M) as {v,},>1. Q.e.d.
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Example 6. (Ezample 3 continued) The Fefferman metric of (Hj, )
is given by [with respect to the (global) coordinates (z%) = (z,y,t,7)
on C'(H,)]

2 0 0 -—ay
0 2 0 oax
(25) [Faﬁ]oga,ﬁ§3 = 0 0 0 a/2
—ay ar a/2 0

where a = 2/3. If F,,3F'®" = §7 then
12 0 y 0
0 1/2 —z 0

af _

(26) [F }oga,ﬁgs - y —x 22| 3
0 0 3 0

where z = x + iy. As a consequence of (25) the only nonvanishing
Christoffel symbols |3,7| = 5(Fays + Fiyja — Faply) are

103,1] = [30,1| = a, [13,0] = |31,0] = —a.

Consequently the nonzero Christoffel symbols 6@7 ‘ = F By, \| are
0 0 2 2
R R A PR
1 1 2 2
03'— 30 |~ /% '03‘—‘30"_‘”‘3’
so that the equations of geodesics of (C'(Hy), Fy,)
d?C a | dCPdCY B
ds? By | ds ds
read
d?z dz
27 —— tijap— =0
d>t d|z|?
(28) T2 W =0, y(s)=pstq pae
We obtain

Proposition 3. i) The geodesics of (C(Hy), Fy,) are either
(29) z(s) = X exp(—iaps) + £ . ApeC,
iap

(30) t(s) = (€ + ap|A\|? + %) s+
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1 ) — .
+m - — [)\ﬁe’”ps + )\ue”ps} , {,meR,
ap

(31) V(s)=ps+q, pgeR,
provided that p # 0 or
(32) 2(s) = As+pu, t(s)=Lls+m, v(s)=¢q, \peC, {;mqeR,

when p = 0. ii) Fy, is geodesically complete. iii) Each geodesic (32) is
o-horizontal. iv) Let by = —ap|\|? — (1/ap)|u|? (p # 0). The geodesics
(29)-(31) are spacelike when ¢ > £y, timelike when ¢ < {y, or null when
0=ty If € = Ly then (29)-(31) projects on a family of closed chains
in 00 ~ H;. v) (32) is a family of geodesics intersecting each fibre of
7w : C(H;) — H; once. Fach geodesic in the family is either spacelike
(A #0) or null (A=0).

Proof. (29)-(30) is the general solution to (27)-(28). In particu-
lar (C(0€), Fy,) is inextensible. Statement (iii) follows from o =
(a/2) dv. For each geodesic C(t) € C(H;) one has F,zC*CP% = 2|3 +
2apIm(z%) + apt hence

(33)  FulCE)C(5)C(s) = PP + P +apl, s €R.
yielding statement (iv).
Theorem 5. The b-boundary of (Hy , 6y) is empty (H; = 0).

A wverbatim repetition of the arguments in the proof of Lemma 2
describes I'(o) as a connection in GL*(4) x St — L*(C(H,)) — H,
(reducible to OT(1,3) x S* — O (C(H,;)) — H;). Let a: [0,1) — H,y
be a smooth inextensible curve and o' : [0,1) — L*(C(H,)) its I'(0)-
horizontal lift issuing at a'(0) = u. Let 8,15 1 Tos)(C(Hr)) — oy
be the I-horizontal lift where ¢ = II;+ o al. We set X* = 3X for each
X e %(C(Hl)) Then

'T( )_d;“)\ i _i_d;.éﬁ 9 _
=0 o al(sy  dS oX) aT(s)—

do* (0 \" dayy,  da” " 0
=i (a_)() ! {E s <°’<3>>%<3>} (axg)ws)

where o = 2% 0 ! and ), = X} o a!. Moreover I'(g) C I yields

da  daV
_/J a pr—
s + s ( o c) a, 0.

A

vo

(34)




b-COMPLETION OF PSEUDOHERMITIAN MANIFOLDS 29

In particular

2 ; T *
da? 0 dy 0
r s) =S ) (L Disy (=
(o 3616 = LG ( ax])ws) + e 37)M(8)
and Ker (o) is the span of {0/dz, 0/0y, 0/0t} hence dy/ds = 0. Thus
v(s) = m with m € R and (34) reads
d o, .1y _ade 5 do adp] 5 day
(35) %(OZH‘FZOK”)—%EOKH, E—ﬁ ds Oé“, K—O
The general solution to (35) is

a a
ag(s) =pu+ 5 tuy(s), ai(s) =q, — B tyz(s),

a
Oéi(S) = r# + §tﬂ |Z(S>’27 ai(S) = tuv p,ua Q,Lm 7’#, tu € R.

Together with Theorem 2 this gives

Lemma 3. The b-boundary H, consists of the endpoints of all inez-
tensible curves a = (z,y,t) : [0,1) — Hy of finite Euclidean length i.e.

fol [i% + 92 + 2] V2 ds is convergent.
Proof. There is a constant degenerate matrix o € R such that
toy(s)  tiy(s)  tay(s)  tay(s)
[al(s)] = a | —tox(s) —tiw(s) —taw(s) —tzx(s)
" 2 | tolz(s)* talz(s)]* talz(s)* E5|2(s)[?
(2/a)to (2/a)ts (2/a)ty  (2/a)ts
We may assume the connected component L*(C(H,)) is chosen such
that for each ¢y € 77! (a(0)) one has

up = (co, {(9/02"),, : 0 < pu < 4}) € LT(C(Hy)).

We wish to describe curves « : [0,1) — H; having finite b-length. Let
al :[0,1) — LT(C(H,)) be the I'(o)-horizontal lift of « issuing at .
Then X}(ug) = 6, and a!(0) = ug yield

100 —(a/2)yo
01 0 (a/2)xg
00 1 —(a/2)|2?
000 0

0 = xg + 1yo. Therefore

(a/2)(y — wo)
—(a/2)(z = @)
(a/2) HZ|12 — [20f?]

+ op .

_ _ 53
Qp = s tu—éu,

o

>

—_
co o
cor~O
e R e T
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so that
I i)
BI=100" = 0 0 1 —(a/2) [oF - [
0 0 0 1

Finally §)(s)ex = a!(s)™" (0/0x") ., vields

/0 la'(s) ™ é(s)]] ds :/0 [i(3)2 + 9(s)? + i(s)?]® ds.

Lemma 3 is proved. Then Theorem 5 follows from Lemma 3 and the
fact that curves « : [0,1) — H; of finite Euclidean length are actually
continuously extendible at s = 1. For given a sequence {s,},>1 C [0,1)
such that s, - lasv —

do((sy), a(sp)) <

Sp .
/ (.I"2+y2+t2)1/2d3

(where dj is the Euclidean distance on R?) hence {a(s,)},>1 is Cauchy
in (R3,dy) and then convergent. []

6. COMMENTS AND OPEN PROBLEMS

Several other CR and pseudohermitian analogs to B. Schmidt’s con-
struction (of a b-completion and b-boundary) have been suggested by
the Reviewers. For every nondegenerate CR manifold, on which a
contact form # has been fixed, the Tanaka-Webster connection V of
(M, 0) gives rise to a connection-distribution T'V in the principal bun-
dle GI(2n + 2,R) — L(M) — M. As Vgy = 0 the connection I'V
is reducible to the bundle of gg-orthonormal frames O(2r + 1,2s) —
O(M, g9) — M. Only a linear connection on M is needed (cf. e.g.
[16]) to build a bundle completion, so both principal bundles L(M)
and O(M, gp) are suitable for repeating the construction in [50]. For
instance let wV € C®(T*(L(M)) ® gl(2n + 1,R)) be the connection
1-form corresponding to I'V and let us set

9 (X,Y) = wy (X) - wy (V) + (X)) - maru(Y)

for any X, Y € T,(L(M)) and u € L(M). Here ny € C®°(T*(L(M)) ®
R?"*1) is the canonical 1-form and dots indicate Euclidean inner prod-
ucts in R@*1* and R?"+!. Then ¢V is a Riemannian metric on L(M)

and one may consider the Cauchy completion L+ (M) of the metric

space (LT (M),dV) where dV is the distance function associated to

g¥. Comparing Lt(M) and L+(9M) is an open problem. For in-

stance, let s : M — 90 be a global section. Such s exists when
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M is a real hypersurface in C"*! [for then 9 ~ M x S' (cf. e.g.
[42]) and one may set s(x) = (z,1) for any € M]. Then the map
f: L(M) — L(OM) given by f(u) = (s(x), {v], S : 1 <i < 2n+1})
for any v = (z,{v; : 1 <i <2n+1}) € L(M) and any = € M, is an
immersion and one ought to compute the (0,2)-tensor field f*g — gV.
Here UiT € Ker(oy)) and (ds(x)w)v; = v;. As emphasized above, both
L+(M) and L+ () depend upon the choice of . The behavior of the
completions (and corresponding boundaries) with respect to a transfor-
mation 6 = e* 6 (with u € C(M)) of the contact form is unknown.

The Carnot-Carathéodory metric dg may fail to be complete, in gen-
eral, yet completeness of dy is relevant in a number of geometric prob-
lems (cf. [55] and [4]). The lack of completeness on dy prompts the use
of the Cauchy completion M of the metric space (M, dg). By analogy
to the work of K. Nomizu & H. Ozeki, [44] (that for any Riemannian
metric there is a conformal transformation such that the resulting met-
ric is complete) one may ask whether u € C*°(M) exists such that any
of d on L*(9M), d¥ on L*(M), or di on M (built in terms of 6 above)
be complete.

Another approach to completions and boundaries, as mentioned in
§1, may rely on the canonical Cartan geometry of the given nonde-
generate CR manifold, which is also related to the conformal structure
determined by the Fefferman metric Fy, A. Cap & A.R. Gover, [12].
Cf. also C. Frances, [23].

Example 1 (used in this paper only for § = 0) is meant to suggest
possible applications of our constructions (of 9Qs and corresponding
boundary) and (by including Fefferman’s example § = 1) that chains
may play a fundamental role in understanding the nature of boundary
points. The same comment applies to Examples 2 and 5 (on boundaries
of Grauert tubes) due to the work by M.B. Stenzel, [54] (relating chains
to integral curves of Reeb vector fields).

Recent discussion (cf. A. Kempf, [36], T. Kopf, [39]-[40], A. Prain,
[47]) of the possibly discrete nature of spacetime (eventually springing
from considerations within quantum field theory) relies on the use of
spectra of naturally defined differential operators (e.g. the Dirac op-
erator associated to a fermionic Weyl spinor field, [40]). Comments
based on the analogy to spectral geometry on compact Riemannian
manifolds (cf. e.g. [36]) remain rather speculative vis-a-vis to the
non-compactness of spacetime and the hyperbolic (rather than ellip-
tic) nature of the Laplace-Beltrami operator of the given Lorentzian
metric. Non-compactness of 9t = C'(M) and non-ellipticity of [J (the
wave operator i.e. the Laplace-Beltrami operator of Fy) are, very much
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the same, an obstacle towards a discrete description of (9, Fy) yet [J
is related to the sublaplacian A, (by a result of J.M. Lee, [41], the
pushforward of O is precisely A, i.e. w0 = A,) which again isn’t
elliptic, yet it is at least subelliptic (with a loss of £ derivative) and
hence hypoelliptic (a feature enjoyed by elliptic operators and highly
exploited in subelliptic theory, cf. e.g. [8]). Again the information
that A, has a discrete spectrum is available only on compact strictly
pseudoconvex CR manifolds [when 91 is compact too and thus (by our
discussion in §3) it is neither causal nor chronological]. Coming to a
possible sampling theory of spacetimes (cf. [36], p. 8), in order to build
a theory anchored into Riemannian geometry, one may attempt to ap-
ply M. Kanai’s discrete approach (cf. [35]) to the Riemannian manifold
(OT(9M),~). Lack of completeness is again relevant to employing rough
isometries (as in [35]) and may prompt the use of b-completions and
b-boundaries.

APPENDIX A. THE DODSON-SULLEY-WILLIAMS LEMMA

The work by C.T.J. Dodson et al., [15], gives a sufficient condition
that an inextensible timelike curve has an endpoint on the b-boundary.
This is a variant of a result by B.G. Schmidt, [50], in the presence
of an assumption of the type "boundedness of acceleration” inspired
by work of F. Rosso, [48]. Also [15] adjusts some imprecisions in [48]
yet the proof applies only under the additional condition that the x°-
component of the velocity in Minkowski space is almost everywhere non
unit. We restate the result in [15] (referred to through this paper as the
Dodson-Sulley- Williams lemma) as it applies to the pseudohermitian
context and give a proof for the sake of completeness.

Lemma 4. ([15], p. 193) Let (M, T (M), 0) be a strictly pseudoconvex
pseudohermitian manifold and c : [0, s*) — 9 an inextensible timelike
curve parametrized by arc length. Let u(s) = (c(s), {Xje) : 1 < j <
m}) € OT(M) be a parallel frame and let é(s) = &(s)Xjs) be the
components of the tangent vector ¢. Then Dyc is either spacelike or
null. If i) the set {s € [0,s*) : £!(s) = 1} has Lebesgue measure zero,
i) s* < 00 and iii)

s* t
(36) / exp (/ | Dec|| ds) dt < o0,
0 0

then ¢ has an endpoint on M.

The frame u(t) has been chosen such that (DeX;)qs) = 0ie. u(s) €
[y for any 0 < s < s*. It gives a linear isometry among T (90)
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and the Minkowski space M [i.e. R™ with the quadratic form —(z%)% +
S @®)?). I £(s) = (£'(s),- - ,&M(s)) are the components of ¢(s)

a=1

then

L(l) = / () e(s) ] ds = / " E(s)]) ds

where ||£|| is the Euclidean norm of ¢ € R™. Let usset ¢’ = (£2,--- ,&™)
so that £ = (¢1,¢). Then

. ; 2
L=—Fy(c, ¢) = —e;058’¢" = (€')" = lI¢'II”
where ||| is the Euclidean norm in R™~!. This is exploited in two
ways i.e. first it yields |€'(s)| > 1 hence

o) = [ (o) do

is a new parameter (for ¢ = ¢! so that ® has constant sign) and second
it yields 2 [€']* > ||£]|* so that one may conduct the following estimates

S*1d<LT: s ds < 8*2121/2d:\/§ S*ld
/Owus_ () /Ousus_/o (2(¢1)2)"* ds /Owgrs

hence L(c!) < oo if and only if fos* |€'| ds < 0o. Combining that with
a result in [50] one has c(s*—) = lim,_, () c(s) € M if and only if ¢ is
bounded. We claim that

(37) & < (&2 - 1) Fy(Dec:, Dic).

In particular for each value of the parameter (Déc')c(s) is either spacelike

or null'’. To prove (37) let E,) be the span of {X, . :2 <a <m}.

and let Py : Tos)(9M) — Es) be the projection. As (DeX)cs) =0
d

Dié = D [Pé — Fy(é, X1)X1] = D:Pé — T {Fy(¢, X1)} Xa

S

or

(38) D;i = DePé+ ¢ X .

Next DFy = 0 and again D.X; = 0 yield

d ) .
% {F@(PC, Xl)} = Fg(DéPC, X1>

hence (as X is orthogonal to E)
(39) Fy(D:Pé, Xy) =0

HWhen D¢ is null assumption (iii) is equivalent to (ii) (and a slight modification
of the proof yields Dodson-Sulley-Williams lemma).
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i.e. D:P¢ € E. Then (38)-(39) imply
(40) Fy(Dic, Dic) = || DePé||? — ¢ .

The norm notation in the right hand side of (40) is justified by the fact
that Fp is positive definite on F (one should however postpone writ-
ing || D:¢||* until the end of the proof of (37)). Also Cauchy-Schwartz
inequality holds for the restriction of Fy to E hence

[Fo(DePé, Pe)| < |[DePef| |[Pef| = (by (40))

= [Fu(Die, D)+ " 1P
or
(41) Fy(DePe, Pe < [Fy(Dac, Det) + 8] P
On the other hand
—1=Fy(¢, ¢) = [|[Pe|® = Fy(c, X1)?
or
(42) |Pé|? = -1+ ¢°.
Also (again due to DFy = 0)
2Fy(DePe, Pé) = = {|[Pel’}
i.e. (by (42))
(43) Fy(DePé, Pé) = ¢
Finally one may substitute from (43) into (41)
(68)" < [FDe. D) + ] (82— 1)

yielding (37). At this point one may complete the proof of Lemma 4
as follows

) 1 [T e
5(0) ‘¢<0>/o ea= | a0 "

= S*ex o) @ S ex o)
—/0 p<1g¢<0)>dt§/o p

log —=| dt =
s* t(%(S) *
= > —2d
/o o /o os)

ds) dt <

3s)
(s)

$(0)
iz [eo ( [
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) /0 exp /Ot (é(s)i(s)l)l/z ds | dt< (by (37))

s* t
< / exp (/ | Dec|| ds) dt
0 0

hence (under the assumptions of Lemma 4) ¢(s*) is bounded so that
c(s*—) e M. Q.ed.
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