CR Structures on Open Manifolds

Howard Jacobowitz

Rutgers University - Camden
Theorem (with P. Landweber)

If

\[H_p(M^{2n+k}; \mathbb{Z}) = 0 \text{ for } p \geq n + k + 1 \]

then every smooth almost CR structure of codimension k on M is homotopic to a \(C^\omega \) CR structure of codimension k. In particular, every \(C^\infty \) CR structure may be deformed to a \(C^\omega \) CR structure.
Question 1 Is every five dimensional strictly pseudoconvex CR structure locally realizable?

Every strictly pseudoconvex CR structure on a compact manifold of dimension five or higher is locally realizable. (Boutet de Monvel, 1975)

In particular, does every strictly pseudoconvex CR structure in the neighborhood of a point of S^5 extend to all of S^5 as a strictly pseudoconvex structure?
Definition
A system of vector fields L_1, \ldots, L_n is aberrant on a domain Ω if at every point of Ω the only germs f satisfying

$$L_jf = 0 \text{ for } j = 1, \ldots, n$$

are the constants.

Jacobowitz-Treves (1983) claimed there exist aberrant CR structures of Levi signature $(n - 1, 1)$. Further, we claimed that the aberrant structures are dense.
Theorem

For each CR structure L of signature $(n - 1, 1)$ and each point of Ω there exists a CR structure L' agreeing with it to infinite order at that point and such that each germ satisfying

$$L'_j f = 0 \text{ for } j = 1, \ldots, n$$

must also satisfy $df = 0$ at the point.

Question 2: Can every CR structure of a given signature in a neighborhood of the origin in R^{2n+1} be extended to a CR structure on all of R^{2n+1} of the same signature?
Question 3: Can every smooth CR structure on a manifold be perturbed to become real analytic?

Yes, if the manifold satisfies the homology conditions of the Theorem.
If

\[H_p(M^{2n+k}; \mathbb{Z}) = 0 \text{ for } p \geq n + k + 1 \]

then there exists

1. An open covering \(M = \bigcup_j O_j, \quad j \in A \),
2. continuous maps \(f_j : O_j \rightarrow \mathbb{C}^{n+k} \),
3. local biholomorphisms \(\gamma_{ij} \) of \(\mathbb{C}^{n+k} \) defined for each pair \((i, j)\) such that \(O_i \cap O_j \neq \emptyset \) satisfying:
 \[\gamma_{ik} = \gamma_{ij} \circ \gamma_{jk} \] at all points where both sides are defined, and
 \[f_i = \gamma_{ij} \circ f_j \text{ on } O_i \cap O_j. \]
\[\mathcal{B}_{n,k} \times \text{BGL}(n) \xrightarrow{\text{cl}(\nu_n, k) \times \text{B(id)}} \text{BGL}(n + k) \times \text{BGL}(n). \]
Lemma

Under the homological conditions on M^{2n+k} there exists a manifold X of real dimension $4n + 3k$ and an embedding $\iota : M \to X$ such that

1. X is a fiber bundle over M with complex structure on the fibers.
2. X admits a foliation \mathcal{F}^{2n+k} transverse to the fibers.
3. There is a surjective bundle map

$$\mathbb{C} \otimes TM \to \iota^* T_{f}^{1,0}$$

with kernel equal to B.

Goal: Find a map $F : M \to X$ such that the composition

$$\mathbb{C} \otimes TM \xrightarrow{F^*} \mathbb{C} \otimes TX \to T_{f}^{1,0}$$

is

1. surjective,
2. injective when restricted to TM,
3. has kernel homotopic to B.