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Abstract. Examples show that in three dimensions the natural
topology on the space of equivalence classes of CR structures need
not be Hausdorff. However, the space of equivalence classes of
compact aspherical CR structures is Hausdorff. Thus the non-
Hausdorff property is due to spherical or Levi-flat points.

1. Definitions

Let M be a given three dimensional manifold. A CR structure on
M consists of a two-plane distribution H and a map J ∶ H → H with
J2 = −I. Equivalently a CR structure may be thought of as a complex
line bundle V ⊂ C ⊗ TM with RL and IL linearly independent for
each nowhere zero local section of V at every point of M . We write
V = [L] for the CR structure defined by such a vector field L. So a CR
structure may be thought of as a map

M → P(C⊗ TM)
of M into the projectivized complex tangent space (with a pointwise
restriction on the image). This leads to a topology on the set of CR
structures as the space of C∞ maps from one manifold to another.

There is an extensive literature about such structures and the exten-
sions to higher dimensions. See for instance [1], [5], [9].

The CR structure is said to be non-degenerate at a point if the two-
plane distribution H is contact at that point. Otherwise it is said to
be Levi-flat at that point. In terms of a non-zero section, Levi-flat at
a point is a condition on the vector bracket of the real and imaginary
components of the section. Namely,

[RL,IL] ∈ span{RL,IL}
at that point. The CR structure is said to be non-degenerate, respec-
tively Levi-flat, if it is non-degenerate, respectively Levi-flat, at all
points of M . Non-degenerate structures are also called strictly pseudo-
convex.
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We may choose a frame for a non-degenerate CR structure and com-
pute a function R called the Cartan curvature. This function is a
relative invariant of the CR structure. Its value at a point depends on
our choice of frame, but whether it is zero or nonzero does not depend
on the choice. For the standard CR structure on S3, namely the one
induced by the complex structure on C2, we have R ≡ 0, so any point
on M with R = 0 for some choice of frame, and thus for every choice
of frame, is called a spherical point. A CR structure is aspherical if it
has no spherical or Levi-flat points.

Two structures (H,J) and (H ′, J ′) are CR equivalent if there exists
a diffeomorphism φ of M to itself such that

φ∗H =H ′

and
φ∗J = J ′φ∗.

In terms of the complex line bundles, this becomes

φ∗V = V ′.

There is a natural topology on any space of equivalence classes. Let
X be a topological space, R ⊂ X × X an equivalence relation, and
π ∶X →X/R the projection taking x ∈X to its equivalence class. The
topology on X/R is the strongest topology in which π is continuous; the
set U ⊂X/R is open if and only if π−1(U) is open in X. It is common
for this topology to be non-Hausdorff. Here is perhaps the simplest
example. Let the group R∗ of nonzero real numbers act on the real
line. Two real numbers x and y are equivalent, that is, (x, y) ∈ R, if
there exists g ∈ R∗ such that gx = y. Thus there are two equivalence
classes, say [0] and [1]. The point [1] is open, the point [0] is not.
Thus the topology is non-Hausdorff.

More generally, let a group G act on a topological space X and define
the relation

R = {(x, y) ∶ ∃g ∈ G,gx = y}.
If G is the group of smooth diffeomorphisms acting on M and X is
the set of CR structures on M , then X/R is the set of CR equivalence
classes.

Theorem 1. The space of CR equivalence classes is non-Hausdorff for
any open and orientable 3-dimensional manifold.

It is natural to conjecture that this is true for all 3-dimensional mani-
folds. In higher dimension there are involutivity conditions that might,
in general, prevent constructions similar to that used in the proof be-
low.
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Theorem 2. The space of CR equivalence classes of aspherical CR
structures is Hausdorff for any compact 3-dimensional manifold.

Let us say that an element x of a topological space X is a non-
Hausdorff progenitor with respect to a relation R if there exists an
element y, different from x, such that any open set in X/R containing
π(x) also contains π(y). So Theorem 2 may be rephrased as:

Theorem 3. Any non-Hausdorff progenitor for the CR structures on
a 3-dimensional compact manifold must contain a Levi-flat point or a
spherical point.

There is a curious analogy with a result of Chakrabarti and Shaw
[4]. They give an example of a Stein domain whose L2 cohomology is
non-Hausdorff. The boundary of the domain is Levi flat.

2. Examples

1- A Levi-flat non-Hausdorff progenitor
Let M = R3 with coordinates (x, y, u) and for each t ∈ R consider the

complex vector field

Lt = ∂z − izt∂u
and the CR structure Vt = [Lt] that it determines. Clearly, the sequence
Vt converges to V0 in the C∞ topology. Note that V0 is Levi-flat but Vt
is not, t ≠ 0.

Now let t ≠ 0 and let φ ∶M →M be the diffeomorphism

φ(z, u) = (tz, tu).

Since

φ∗Lt = t(∂z − iz∂u)
= tL1

we have that each Vt, t ≠ 0, is CR equivalent to V1. If π is the map of a
CR structure to its equivalence class, then Vt is a smooth curve of CR
structures with π(Vt) = π(V1) for all t ≠ 0 but π(V0) ≠ π(V1). Thus the
distinct points π(V1) and π(V0) in X/R cannot be separated by open
sets.

Remark: Let 1 ≤m ≤ n. There exists a non-Hausdorff progenitor for
the CR structures on R2n+1 for which the Levi form at each point has
precisely m zero eigenvalues. To see this, just consider

Lj = ∂zj − izjt∂u j = 1, . . . ,m
Lj = ∂zj − izj∂u j =m + 1, . . . , n.
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Further, if M2n+1 is an open, parallelizable manifold then M2n+1 im-
merses into R2n+1 [6] and so has the same type of non-Hausdorff pro-
genitor.

2- A spherical non-Hausdorff progenitor
The complex structure on C2 induces a CR structure on the hyper-

quadric

Q = {(z,w) ∶ Iw = ∣z∣2}.

This structure is locally equivalent to that induced on S3 and so is
spherical. It is easy to see that this is a non-Hausdorff progenitor. For
this, let

Mt = {(z,w) ∶ Iw = ∣z∣2 + t(z2 + z2)∣z∣4}

and

Ft ∶ R3 →Mt

Ft(z, u) = (z, u + i(∣z∣2 + t(z2 + z2)∣z∣4).

For t = 0, the induced structure on R3 corresponds to the usual spherical
structure on Q. We note that for each t ≠ 0 there exists a biholomor-
phism Φt on C2 such that

Φt ∶Mt →M1,

namely,

(z,w)→ (t 16 z, t 13w).

So, for t ≠ 0, the induced structures on R3 are all equivalent and are
known to be aspherical, see for instance [5]. Thus the usual spherical
structure is a non-Hausdorff progenitor.

3- Lie group examples
Let G be a three-dimensional Lie group with a CR structure given

by a left invariant vector field L. So L may be thought of as an element
of the complex Lie algebra G and the CR structure generated by L as
a point in the projectivized Lie algebra, [L] ∈ P(G). The orbit of [L]
under the adjoint action of G on G consists of CR structures equiva-
lent to [L]. It may happen that some orbit is open with a boundary
point inequivalent to [L]. Thus the induced topology on the space
of equivalence classes in non-Hausdorff. By Theorem 2, the boundary
point must define a Levi-flat or spherical CR structure. This is the
case for the group E(2) of Euclidean motions in the plane and for the
Heisenberg group Q [2]. In fact, both equivalence spaces are two points
{p, q} with p open and q not open. For E(2), p is aspherical and q is
Levi-flat while for Q, p is spherical and q is Levi-flat.
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3. Proofs

Either of the first two examples establishes Theorem 1 for R3. Since
any open and orientable 3-manifold immerses in R3 [10], these examples
may be pulled back to M .

We start the proof of the second theorem by recalling a result from
general topology, see [8, p. 98]:

Let X be a topological space, R ⊂X×X an equivalence relation, and
π ∶ X → X/R the map to equivalence classes where this latter space
has the strongest topology in which π is continuous; U ⊂ X/R is open
if π−1(U) ⊂ X is open. If R is a closed subset and π is an open map,
then X/R is Hausdorff.

We want to apply this when X is the space of aspherical C∞ CR
structures on a manifold M and R is the relation of CR equivalence.
Thus π ∶X →X/R is the map of an aspherical CR structure to the set
of all its images under the group of smooth diffeomorphisms of M to
itself. Denote this group by D. So

π ∶X →X/D.

Lemma 1. The map π is an open map.

Lemma 2. The set R is closed.

Proof of Lemma 1. Let U be an open set in X. We need to show that
π−1(π(U)) is also open. D acts on X by

D ×X →X

(φ, (H,J))→ (φ∗H,φ∗Jφ−1∗ ).

Since U is an open set so is D(U). But

D(U) = π−1(π(U))

and we are done. �

This first lemma holds just as well when X is the space of CR struc-
tures rather than the space of aspherical CR structures. So any subtlety
must lie in the proof of our second lemma.
Proof of Lemma 2. We first need to briefly review what makes aspheri-
cal points special. We start with a non-degenerate CR structure (H,J)
and, working near some point, find a real one-form ω and a complex
one-form ω1 such that
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ω(H) = 0,

ω1(ξ + iJξ) = 0, ξ ∈H(3.1)

dω = iω1 ∧ ω1 mod ω

The set of choices for these frames is a four-dimensional space. There
is an algorithm which provides, in an almost unique way, a choice of
these one-forms in a neighborhood of an aspherical point.

Let p ∈ M be an aspherical point of a CR structure V .
There exist a neighborhood of p and a canonical choice
of forms ω and ω1 as in (3.1) such that ω is unique and
ω1 is unique up to sign. If φ ∶M →M ′ is a CR diffeomor-
phism of V → V ′ and ω′ and ω1′ are the corresponding
canonical choice for V ′ at φ(p) then

φ∗(ω′) = ω
φ∗(ω1′) = ±ω1.

This algorithm is due to Cartan [3]. See also [7, p. 151]. We will call
these one-forms our basic forms.

We are now ready to prove Lemma 2. Let R ⊂ X ×X be the CR
equivalence relation and let the points (xk, yk) ∈ R converge to some
point (x, y) ∈X ×X. So we have

π(xk) = π(yk)

and we need to show that

π(x) = π(y).

Now π is continuous by definition (of the quotient topology) but we do
not know (yet) that the quotient topology is Hausdorff. So convergent
sequences need not have unique limits.

We may rewrite the convergence for {xk} as

(Hk, Jk)→ (H,K)

and for {yk} as

(H ′

k, J
′

k)→ (H ′, J ′)
For the basic forms we have

ωk → ω and ω′k → ω′.

Because xn and yn are CR equivalent, we also have a sequence

φn ∶ xn → yn
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of CR diffeomorphisms. We claim that there is subsequence that con-
verges along with all its derivatives and establishes the CR equivalence
of x and y via a C∞ diffeomorphism.

Lemma 3. Let M and M ′ be three-dimensional compact and aspherical
CR structures. There exist constants ck, k = 1,2, . . ., depending only
on these CR structures such that for any CR diffeomorphism of nearby
CR structures

Φ ∶M →M ′

the differential satisfies
∣DΦ∣Ck < ck.

Let us now assume this lemma. Thus {φn} is a bounded and equicon-
tinuous family of smooth functions on a compact manifold and hence
has a convergent subsequence,

φnj
→ φ

The sequence {Dφnj
} is also equicontinuous and so φ ∈ C1(M). The

basic forms ωk and ω′k converge to ω and θ and so φ satisfies

(3.2) φ∗ω′ = ω and φ∗ω1′ = ω1.

Hence the limit φ is a CR diffeomorphism and thus (x, y) ∈R. This
proves that R is closed.

Proof of Lemma 3. It is enough to work in a single coordinate patch.
Since ω, ω1, and ω1 are independent, as are ω′, ω1′ and ω1′, the basic
relation (3.2) may be rewritten as

∂φj

∂xk
= Aj

k(φ(x))

with Aj
k bounded by constants derived from the basic forms and valid

for nearby CR structures. This establishes the desired C0 estimate for
Dφ and shows how to derive the estimates for all the higher derivatives.

�
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