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Abstract. In this paper, we study stability of the spectrum of the Kohn Laplacian �b

on the boundary of a smoothly bounded domain in Cn as the boundary is perturbed in
the C2-topology. We obtain estimates for spectral stability of the Kohn Laplacian on
smooth compact hypersurfaces that satisfy uniform subelliptic estimate, in particular for
strictly pseudoconvex hypersurfaces in Cn and pseudoconvex hypersurfaces of finite type
in C2.
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1. Introduction

In physical sciences, exact values are oftentimes impossible to obtain and approxima-
tions are used instead. It is then important to understand whether the observed quan-
tity remains stable when other parameters are slightly perturbed. Stability of the spec-
trum for the classical Laplace operator with the Dirichlet or Neumann boundary con-
dition on bounded domains in Rn has been studied extensively in the literature (see,
e.g., [F99, D95, D00, BL08] and references therein). In [FZ22], the first and third au-
thors initiated a systematic study of spectral stability of the ∂-Neumann Laplacian on a
bounded domain in Cn when the underlying domains are perturbed and established upper
semi-continuity properties for the variational eigenvalues of the ∂̄-Neumann Laplacian on
bounded pseudoconvex domains in Cn, lower semi-continuity properties on pseudocon-
vex domains that satisfy property (P ), and quantitative estimates on smooth bounded
pseudoconvex domains of finite D’Angelo type in Cn.

In this paper, we study spectral stability of the Kohn Laplacian on the boundary of a
smoothly bounded domain in Cn when the boundary is perturbed. Our main result can
be stated as follows:

Theorem 1.1. Let Ω and Ωt, −1 ≤ t ≤ 1, be bounded pseudoconvex domains in Cn
with smooth boundaries M and M t respectively in Cn, such that M0 = M . Let ρ and ρt

be the signed distance functions for M and M t respectively. Assume that there exists a
neighborhood U of M such that ρ and ρt are smooth with uniformly bounded C∞-norms
on U .

(1) Let n ≥ 3. Suppose 1 ≤ q ≤ n − 2 and the Kohn Laplacian for (0, q)-forms on
M t satisfies a uniform subelliptic estimate. Let λqk(M) and λqk(M

t) be the kth
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eigenvalues for the Kohn Laplacian on (0, q)-forms on M and M t respectively.
Then there exists a positive constant Ck independent of t such that

(1.1) |λqk(M
t)− λqk(M)| ≤ Ckδt,

provided that δt = ‖ρ − ρt‖C2,U is sufficiently small. In particular, the above
estimate holds if M is strictly pseudoconvex in Cn.

(2) Let n ≥ 3. Suppose a uniform subelliptic estimate holds for the Kohn Laplacian
on M t for (0, 1)-forms. Let λ0

k(M) and λ0
k(M

t) be the kth non-zero eigenvalues
for the Kohn Laplacian for functions on M and M t respectively. Then (1.1) holds
for q = 0. Analogously, suppose a uniform subelliptic estimate holds for the Kohn
Laplacian on M t for (0, n− 2)-forms. Then (1.1) holds for q = n− 1.

(3) Let n = 2. If M is pseudoconvex of finite type, then (1.1) holds for q = 0, 1
provided δt = ‖ρt − ρ‖C∞,U is sufficiently small.

Let n ≥ 3 and 1 ≤ q ≤ n − 2. Recall that the Kohn Laplacian �b is said to satisfy
a subelliptic estimate for (0, q)-forms on a smooth compact hypersurface M if there exist
constants 0 < ε ≤ 1/2 and C > 0 such that

(1.2) ‖u‖2ε ≤ C(Qb(u, u) + ‖u‖2)

for every u ∈ Dom(Qb) such that u ⊥ Ker(Qb), where ‖·‖ε denotes the L2-Sobolev norm of
order ε and Qb(u, u) the quadratic form associated with the Kohn Laplacian (see Section 2
for detail). We say that a uniform subelliptic estimate holds on M t if estimate (1.2) holds
on M t and the constants ε and C in (1.2) can be chosen to be independent of the parameter
t. Note that a subelliptic estimate (1.2) implies that the Kohn Laplacian �b has compact
resolvent and its spectrum consists of discrete eigenvalues of finite multiplicity.

It follows from the works of D’Angelo ([Dan82]) and Catlin ([Ca83, Ca87]) that the ∂-
Neumann Laplacian satisfies a subelliptic estimate for (0, q)-forms on a smooth bounded
pseudoconvex domain Ω in Cn if and only if its boundary M is of finite D’Angelo q-
type (i.e., the order of contact of M with any q-dimensional complex analytic variety is
finite). Furthermore, we know from the work of Kohn that the ∂-Neumann Laplacian
satisfies the subelliptic estimate on a smooth bounded pseudoconvex domain Ω if and
only if the Kohn Laplacian satisfies the subelliptic estimate on its boundary bΩ ([K02,
Theorem 8.2]). Since strict pseudoconvexity of M is preserved under a sufficiently small
perturbation in the C2-topology, a uniform subelliptic estimate holds on M t when M is
strictly pseudoconvex. Similarly, for a smooth pseudoconvex hypersurface in C2, the finite
type condition in the sense of D’Angelo is equivalent to the finite commutator type in
the sense of Hörmander which is stable under sufficiently small C∞-perturbation. Thus a
uniform subelliptic estimate holds on M t when M is pseudoconvex hypersurfaces of finite
type in C2, provided M t is a sufficiently small perturbation of M in C∞-topology.

Our paper is organized as follows. In Section 2, we recall the necessary definitions
and set up the problem. In Section 3, we define the transition operator which plays
an important role in the analysis. In Section 4, we establish an upper semicontinuity
property for the eigenvalues under the assumption that the subelliptic estimate holds on
M . In Section 5, we establish the lower semicontinuity property when a uniform subelliptic
estimate holds. In Section 6, we study spectral stability of the Kohn Laplacian on bottom
degree (functions) and top degree ((0, n−1)-forms) cases. The last section contains further
remarks.
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2. Preliminaries

Let (M,T 1,0M) be an orientable CR manifold of real dimensional 2n−1, equipped with

a Hermitian metric on CTM so that T 1,0M is orthogonal to T 0,1M := T 0,1M . Let T be
the orthogonal complement of T 1,0M ⊕ T 0,1M in CTM . Denote by T ∗1,0M , T ∗0,1M and
θ the dual bundles of T 1,0M , T 0,1M and T , respectively. For 0 ≤ p, q ≤ n− 1, let Λp,qM
be the vector bundle defined by

Λp,qM = ΛpT ∗1,0M ⊗ ΛqT ∗0,1M.

Denote by Ep,q(M) the space of smooth sections of Λp,qM over M . Let ∂b be the tangential
Cauchy-Riemann operator defined intrinsically by

∂
p,q
b = P p,q+1 ◦ dM : Ep,q(M)→ Ep,q+1(M)

where dM is the exterior differential operator on M and P p,q+1
M : Λp+q+1(M)→ Λp,q+1(M)

the orthogonal projection. (We will drop the superscripts from ∂
p,q
b when they are clear

from the contexts.) We also use ∂b to denote the maximal extension of ∂b on L2
(p,q)(M),

the space of (p, q)-forms with L2-coefficients. As such, the domain Dom(∂b) of

∂
p,q
b : L2

(p,q)(M)→ L2
(p,q+1)(M)

consists of forms u ∈ L2
(p,q)(M) such that ∂bu ∈ L2

(p,q+1)(M) in the sense of distribution.

Thus ∂b is a linear, closed, and densely defined operator on L2
(p,q)(M). Let

∂
p,q∗
b : L2

(p,q+1)(M)→ L2
(p,q)(M)

be the adjoint of ∂b with

Dom(∂
∗
b) =

{
u ∈ L2

(p,q+1)(M) | ∃C > 0 such that |(u, ∂bφ)| ≤ C‖φ‖,∀φ ∈ Dom(∂b)
}
.

For 0 ≤ p ≤ n and 1 ≤ q ≤ n− 2, the Kohn-Laplacian on L2
(p,q)(M) is given by

�p,qb = ∂
p,q−1
b ∂

p,q−1∗
b + ∂

p,q∗
b ∂

p,q
b : L2

(p,q)(M)→ L2
(p,q)(M)

with

Dom(�p,qb ) =
{
u ∈ L2

(p,q)(M) | u ∈ Dom(∂b) ∩Dom(∂
∗
b),

∂bu ∈ Dom(∂
∗
b), ∂

∗
bu ∈ Dom(∂b)

}
.

It follows that �b is a linear, closed, and densely defined self-adjoint operator on L2
(p,q)(M)

(see [Fu10] for a spectral theoretic proof of this fact). Let

Qb(u, v) = (∂bu, ∂bv) + (∂
∗
bu, ∂

∗
bv), u, v ∈ Dom(Qb) = Dom(∂b) ∩Dom(∂

∗
b)

be the sesquilinear form associated with the Kohn Laplacian �b. Write

Ker(Qb) = Dom(∂b) ∩Dom(∂
∗
b).

For q = 0, the Kohn Laplacian is given by

�p,0b = ∂
p,0∗
b ∂

p,0
b : L2

(p,0)(M)→ L2
(p,0)(M)

with the associated sesquilinear form

Qb(u, v) = (∂bu, ∂bv) u, v ∈ Dom(Qb) = Dom(∂b).
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Similarly, for q = n− 1, the Kohn Laplacian is

�p,n−1
b = ∂

p,n−1
b ∂

p,n−1∗
b : L2

(p,n−1)(M)→ L2
(p,n−1)(M)

with the associated sesquilinear form

Qb(u, v) = (∂
∗
bu, ∂

∗
bv), u, v ∈ Dom(Qb) = Dom(∂

∗
b).

When M is a smooth hypersurface in Cn with the inherited underlying CR structure, the
tangential Cauchy-Riemann operator ∂̄b can be defined extrinsically as follows. Consider a
neighborhood U of M in Cn and let r ∈ C∞(U) be a defining function of M such that r = 0
and |dr| = 1 on M . We denote the space of smooth sections of Λp,qU over U as Ep,q(U),
and the associated Cauchy-Riemann operator ∂̄ : Ep,q(U) → Ep,q+1(U). Additionally, we
can restrict the bundle Λp,q(U) to M and denote it as Λp,q(U)|M . More precisely, if we
write

f =
∑′

I,J

fI,JdzI ∧ dz̄J ∈ Ep,q(U),

then f |M ∈ Λp,q(U)|M is obtained by restricting the coefficients fI,J to M . Let

(2.1) Ip,q(U) = {rf + ∂r ∧ g | f ∈ Λp,q(U), g ∈ Λp,q−1(U)}

be the ideal in Λp,q(U) locally generated by r and ∂r. Let Λp,q(M) be the orthogonal
complement of Ip,q|M in Λp,q(U)|M Let

τM : Λp,q(U)|M → Λp,q(M)

be the orthogonal projection. For every f ∈ Λp,q(U)|M , we refer to τM (f) as the tangential
part of f . Since |dr| = 1 on M , it is easy to see that

(2.2) τM (f) = (∂r)∗y(∂r ∧ f),

where

(∂r)∗ = 4

n∑
k=1

∂r

∂zk

∂

∂z̄k

is the dual vector to the form ∂r and y the contraction operator of a vector with a form.
For an open set W ⊂M , denote by Ep,qM (W ) the space of smooth sections of Λp,q(M) over

W and Dp,qM (W ) the the space of compactly supported forms in Ep,qM (W ). The (extrinsic)

tangential Cauchy-Riemann complex ∂M : Ep,qM (W )→ Ep,q+1
M (W ) is defined as follows: For

f ∈ Ep,qM (W ), let f̃ ∈ Ep,qM (W̃ ) be an extension of f to W̃ for some open set in Cn such

that W̃ ∩M = W and τM (f̃) = f on W . Then

∂Mf = τM (∂f̃).

Evidently, the definition of ∂M is independent of the ambient extension. In the case when
M is an embedded hypersurface in Cn, the extrinsic and intrinsic approaches lead to
different tangential Cauchy-Riemann complexes, but one can easily show that they are
isomorphic (see [Bo91] for details). Since p plays no role in our analysis, we consider only
the action of ∂b on (0, q)-forms, 0 ≤ q ≤ n− 1.

Let λqk(M) be the kth-variational eigenvalue of �b on L2
(0,q)(M), given by the following

Min-Max Principle:

(2.3) λqk(M) = inf
L⊂Dom(Qb)

dimL=k

sup
u∈L\{0}

Qb(u, u)/‖u‖2
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where the infimum takes over all linear k-dimension subspaces of Dom(Qb). Recall that
the spectrum of a non-negative self-adjoint operator S is purely discrete if and only if the
variational eigenvalues λk(S) defined as above go to ∞ as k → ∞. In this case, λk(S) is
the kth-eigenvalue of S when the eigenvalues are arranged in increasing order and repeated
according to multiplicity (see [D95, Chapter 4]). Note that in the cases when q = 0 and
q = n− 1, the kernel Ker(Qb) of Qb is always infinite dimensional when M is embedded.
In these cases, when we say kth-variational eigenvalue of �b, we refer to the kth-variational
eigenvalue of �b restricted to the orthogonal complement of Ker(Qb). For example, in the
case when q = 0,

λ0
k(M) = inf

L⊂Dom(∂b)∩Ker(∂b)
⊥

dimL=k

sup
u∈L\{0}

‖∂bu‖2/‖u‖2.

Let Si, i = 1, 2, be non-negative self-adjoint operators on Hilbert space H with associ-
ated quadratic forms Qi. One way to estimate the difference between variational eigen-
values λk(S1) of S1 and λk(S2) of S2 is to construct a transition operator T : Dom(Q1)→
Dom(Q2) and estimate the difference between 〈f, g〉1 and 〈Tf, Tg〉2 and between Q1(f, g)
and Q2(Tf, Tg) for f and g in any k-dimensional subspace of Dom(Q1). The following
lemma is a simple consequence of the min-max principle (2.3) (compare [FZ22, Lemma 2.1]
and the subsequent remark).

Lemma 2.1. Let Si, i = 1, 2, be non-negative self-adjoint operators on Hilbert spaces Hi

with associated quadratic forms Qi. Let T : Dom(Q1) → Dom(Q2) be a linear transfor-
mation from the domain of Q1 to that of Q2. Suppose there exist constants 0 < a < 1 and
b > 0 such that for any k-dimensional subspace Xk of Dom(Q1) and any u ∈ Xk,

‖Tu‖22 ≥ (1− a)‖u‖21 and Q2(Tu, Tu) ≤ (1 + b)Q1(u, u)

for any u ∈ Dom(Q1). Then

λk(S2) ≤ 1 + b

1− a
λk(S1).

Proof. Let Xk be any k-dimensional subspace of Dom(Q1). Since T is one-to-one, T (Xk)
is a k-dimensional subspace of Dom(Q2). Hence

λk(S2) ≤ sup
{Q2(Tu, Tu)

‖Tu‖22
| u ∈ Xk, u 6= 0

}
≤ sup

{(1 + b)Q1(u, u)

(1− a)‖u‖21
| u ∈ Xk, u 6= 0

}
.

Taking infimum over all k-dimensional subspaces of Dom(Q1), we then obtain the desired
inequality. �

3. Transition operator

Let Ω be a bounded domain in Cn and let M = bΩ. For any σ > 0, set Uσ(M) =
{z ∈ Cn | dist(z,M) < σ}, where dist(z,M) is the Euclidean distance from z to M . The
hypersurface M is said to be of positive reach if there is a σ > 0 such that each z ∈ Uσ(M)
has a unique nearest point on M . Denote by Reach(M) the largest such σ. It follows from
[Fe59, Theorem 4.12] that when Ω is smooth enough (C2 suffices), Reach(M) > 0. Assume
now that M is C2-smooth. Let σ0 = Reach(M) and U0 = Uσ0(M). Let ρ(z) be the signed
distance from z to M such that ρ(z) = − dist(z,M) for z ∈ Ω and ρ(z) = dist(z,M)
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for z ∈ Cn \ Ω. Then ρ ∈ C2(U0) and |∇ρ| ≡ 1 on U0. We will also use ρ to denote
a C2-extension of the signed distance function to Cn. Let Ωt be a family of bounded
domains with C2-smooth boundary M t for t ∈ (−1, 1) such that Ω0 = Ω, M t ⊂ U0 and
dt = dH(M t,M)→ 0 as t→ 0, where

dH(M t,M) = max
z∈M

dist(z,M t) = max
w∈Mt

dist(w,M)

is the Hausdorff distance between M and M t. Let ρt be the signed distance defining
function for Ωt, extended to be C2 on Cn. Let

δt = ‖ρt − ρ‖C2,U0

be the C2-norm over U0. Evidently, dt ≤ δt. Let

π : U0 →M

be the projection ontoM along the real normal direction such that dist(z,M) = dist(z, π(z)).
Then π is C2 on U0. Let

πt : M t →M

be the restriction of π to M t.
We can now define the transition operator. Let P p,q denote the natural orthogonal

projection from Λp+q(U0) onto Λp,q(U0). The transition operator is then defined as follows:

(3.1) T t = τMt ◦ P 0,q|Mt ◦ π∗ : Λ0,q(M)→ Λ0,q(M t),

where π∗ : Λ0,q(M) → Λq(U0) is the pull-back of π and P p,q|Mt(u) denotes the form
obtained by restricting the coefficients of P p,q(u) to M t. It is easy to see that T t extends
to a bounded linear transformation from L2

(0,q)(M) into L2
(0,q)(M

t) and it maps Dom(Qb)

into Dom(Qt,b).
In the remainder of this section, we will show that the L2-norm of a (0, q)-form on M

is stable under this transition operator. The following lemma is well known. We provide
a proof for the reader’s convenience.

Lemma 3.1. πt is a C2-diffeomorphism between M t and M , provided δt is sufficiently
small.

Proof. We first observe that πt is surjective when δt is sufficiently small. In fact, for every
z ∈M , we have

ρt(z + s #»n(z)) = ρt(z) +∇ρt(z) · #»n(z)s+O(s2),

where #»n(z) = ∇ρ(z) is the outward normal direction of M at z. Thus for any sufficiently
small s > 0,

ρt(z − s #»n(z)) ≤ ρt(z)− s/2 < 0 and ρt(z + s #»n(z)) ≥ ρt(z) + s/2 > 0,

provided δt is sufficiently small. Thus by the intermediate value theorem, there exists a
s0 ∈ (−s, s) such that ρt(z + s0

#»n(z)) = 0 and π(z + s0
#»n(z)) = z.

We now show π is injective. Proving by contradiction, we assume that there are two
distinct points z1 and z2 on M t that project to the same point z on M . Write zi =
z + si

#»n(z), i = 1, 2, where s1 and s2 are two distinct real numbers in (−σ0, σ0). Set
g(s) = ρt(z + s #»n(z)). Then g(s1) = g(s2). This contradicts the fact that

g′(s) = ∇ρt(z + s #»n(z)) · #»n(z) ≥ 1/2,

when δt is sufficiently small. Then both πt and its inverse are C2-smooth is a consequence
of the implicit function theorem. �
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Proposition 3.2. Let ιt : M → M t be the inverse of πt. Then there exists a constant
C > 0 such that

(3.2)
∣∣|T tu|2(ιt(z))| Jac ιt∗z| − |u|2(z)

∣∣ ≤ Cδt|u|2(z)

for any u ∈ Λ0,q(M), where | · | denotes the pointwise norm of a form and Jac ιt∗z the
Jacobian determinant of ιt at z. Furthermore,

(3.3)
∣∣‖T tu‖2Mt − ‖u‖2M

∣∣ ≤ Cδt‖u‖2M
for any u ∈ L2

(0,q)(M).

We do some preparations before proving this proposition. Let p ∈ U0 and let p0 = π(p).
After a unitary transformation, we might assume p0 is the origin and the negative Re zn-
direction is the outward normal direction at p0. In this coordinate, p = (0, . . . , 0, d) and
there exists a neighborhood U of the origin such that

M ∩ U = {(x̃, x2n) ∈ U | x2n = f(x̃)},
where f(x̃) is a C3 function in the form f(x̃) =

∑2n−1
k,l=1 aklxkxl + O(|x̃|3). Here we

identify Cn with R2n and use the notations zj = x2j−1 +
√
−1x2j , j = 1, · · · , n, and

x̃ = (x1, . . . , x2n−1).
For (x̃, x2n) near p0, we write π(x̃, x2n) = (ỹ, f(ỹ)) where ỹ = (y1, . . . , y2n−1) and

yj = yj(x1, . . . , x2n) are C3-smooth near the origin. The following lemma is well known.
We provide a proof, following the proof of Theorem 1.1 in [Fu95] (compare also [KP81])
for the reader’s convenience.

Lemma 3.3. With the above notations, for sufficiently small d, we have:

∂ρ

∂xk
(p) = 0,

∂ρ

∂x2n
(p) = −1;(3.4)

∂2ρ

∂xj∂xk
(p) = ajk +O(d),

∂2ρ

∂xj∂x2n
(p) = 0;(3.5)

∂yj
∂xk

(p) = δjk + ajkd+O(d2),
∂yj
∂x2n

(p) = 0;(3.6)

and

∂2yj
∂xk∂xh

(p) = O(d),
∂2yj

∂xk∂x2n
(p) = ajk +O(d),

∂2yj
∂x2

2n

(p) = O(d),(3.7)

for all 1 ≤ h, j, k ≤ 2n− 1, where the constant depending up to the C3-norm of ρ.

Proof. Estimates (3.4) and (3.5) were given in [Fu95, Theorem 1.1]. For completeness,
we provide a detailed proof for (3.6) and (3.7). Given (x̃, x2n) near p0, observe that for
s̃ = (s1, . . . , s2n−1) near the origin,

A(s̃) =
2n−1∑
j=1

(xj − sj)2 + (x2n − f(s))2

attains a local minimum when s̃ = ỹ. Differentiating both sides with respect to sj and
then evaluating at s̃ = ỹ, we have

(3.8) (xj − yj) + (x2n − f(ỹ))
∂f

∂yj
(ỹ) = 0, 1 ≤ j ≤ 2n− 1.
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By taking ∂/∂xk, 1 ≤ k ≤ 2n− 1, to both sides of (3.8), we have

(3.9) δjk −
∂yj
∂xk
−
( 2n−1∑

l=1

∂f

∂yl

∂yl
∂xk

) ∂f
∂yj

(ỹ) + (x2n − f(ỹ))
2n−1∑
l=1

∂2f(ỹ)

∂yj∂yl

∂yl
∂xk

= 0.

Similarly, by taking ∂/∂x2n to both sides of (3.8), we have

(3.10) − ∂yj
∂x2n

+
(

1−
2n−1∑
l=1

∂f

∂yl

∂yl
∂x2n

) ∂f
∂yj

(ỹ) + (x2n − f(ỹ))

2n−1∑
l=1

∂2f(ỹ)

∂yj∂yl

∂yl
∂x2n

= 0.

Evaluating (3.9) and (3.10) at p = (0, . . . , 0, d), we obtain

δjk −
∂yj
∂xk

+ d

2n−1∑
l=1

ajl
∂yl
∂xk

= 0(3.11)

and

− ∂yj
∂x2n

+ d
2n−1∑
l=1

ajl
∂yl
∂x2n

= 0.(3.12)

Applying Cramer’s rule to the linear system (3.11), 1 ≤ j, k ≤ 2n− 1, we obtain

∂yj
∂xk

(p) = δjk + ajkd+O(d2).

Similarly, from (3.12), we obtain
∂yj
∂x2n

(p) = 0.

We thus establish (3.6).
We now proceed to prove (3.7). Taking ∂/∂xh, 1 ≤ h ≤ 2n − 1 to (3.9) and then

evaluating at p, we obtain

(3.13) − ∂2yj
∂xk∂xh

(p) + d
∂

∂xh

2n−1∑
l=1

∂2f(ỹ)

∂yj∂yl

∂yl
∂xk

= 0.

Thus
∂2yj

∂xk∂xh
(p) = O(d)

with the constant depending on the C3-norm of f . Similarly, applying ∂/∂x2n to (3.9),
we obtain

(3.14) − ∂2yj
∂xk∂x2n

(p) +
2n−1∑
l=1

∂2f

∂yj∂yl

∂yl
∂xk

(p) + d
∂

∂x2n

2n−1∑
l=1

∂2f

∂yj∂yl

∂yl
∂xk

= 0,

Together with (3.6), we then have

(3.15)
∂2yj

∂xk∂x2n
(p) = ajk +O(d).

Moreover, applying ∂/∂x2n to (3.10) and then evaluating at p, we have

(3.16) − ∂2yj
∂x2

2n

(p) +
2n−1∑
l=1

∂2f

∂yj∂yl

∂yl
∂x2n

(p) + d
∂

∂x2n

2n−1∑
l=1

∂2f

∂yj∂yl

∂yl
∂xk

= 0.
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It follows that

(3.17)
∂2yj
∂x2

2n

(p) = O(d).

�

As a consequence of this lemma, we have:

Lemma 3.4. With the notation above, we have that

(3.18) Jac π∗p = 1 +O(d) and Jac ιt∗p0 = 1 +O(dt)

for any p ∈M t and p0 ∈M respectively.

For a given point p0 ∈M , since |dρ| = 1 on M , we may assume without loss of generality
that ∂ρ/∂zn 6= 0 on a neighborhood U of p0. Let

(3.19) L̄j =
∂

∂z̄j
− ∂ρ

∂z̄j

( ∂ρ
∂z̄n

)−1 ∂

∂z̄n
, 1 ≤ j ≤ n− 1.

Then {L̄1, . . . , L̄n−1} is a local frame for T (0,1)(M) on U . Let

(3.20) ω̄α = dz̄α − 4
∂ρ

∂zα
∂ρ, 1 ≤ α ≤ n, and θ = ∂ρ.

Then {ω̄1, . . . , ω̄n−1} is a local dual frame to {L̄1, . . . , L̄n−1} for Λ0,1(M) on U . Note that
θ is orthogonal to ω̄j , 1 ≤ j ≤ n − 1, and {ω̄1, . . . , ω̄n−1, θ} is a local frame for Λ0,1(Cn)
on U . Furthermore, ω̄n is linearly dependent on ω̄1, . . . , ω̄n−1 in Λ0,1(M). Indeed,

(3.21) ω̄n = −ρ−1
n̄

n−1∑
k=1

ρk̄ω̄k.

Hereafter, to simplify the notations, we write ∂ρ
∂z̄j

and ∂ρ
∂z̄j

as ρj and ρj̄ respectively. Also,

lowercase roman indices will run from 1 to n− 1, whereas lowercase greek indices will run
from 1 to n. Observe that

(3.22) τM (dz̄α) = (∂ρ)∗y(∂ρ ∧ dz̄α) = ω̄α, α = 1, · · · , n.

Moreover,

(3.23) τM (dz̄K) = ω̄K .

where K is any tuple of integers from 1 to n. We define L̄tj and ω̄tα similarly by replacing ρ

by ρt in (3.19) and (3.20) respectively. The identities (3.22) and (3.23) remain true when
M is replaced by M t, ρ by ρt, and ω̄α by ω̄tα.

Write π(z) = (π1(z), . . . , πn(z)), we have

(3.24) π∗ω̄j =
n∑

α=1

(∂π̄j
∂z̄α

dz̄α +
∂π̄j
∂zα

dzα

)
−

n∑
α=1

(ρjρᾱ ◦ π)
n∑
β=1

(∂π̄α
∂z̄β

dz̄β +
∂π̄α
∂zβ

dzβ

)
.

Thus

(3.25) P 0,1 ◦ π∗ω̄j =

n∑
α=1

∂π̄j
∂z̄α

dz̄α −
n∑

α=1

(ρjρᾱ ◦ π)
n∑
β=1

∂π̄α
∂z̄β

dz̄β.
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Restricting the coefficients to M t and applying τMt , we then obtain

(3.26) T t(ω̄j) =
n∑

α=1

∂π̄j
∂z̄α

ω̄tα −
n∑

α=1

(ρjρᾱ ◦ π)
n∑
β=1

∂π̄α
∂z̄β

ω̄tβ.

Let p be any point on M t and let p0 = π(p) ∈ M . After a unitary transformation, we
assume p0 is the origin and the negative Re zn-axis is the outward normal direction at p0.
It follows from (3.26) and Lemma 3.3 that

(3.27) T t(ω̄j)(p) = ω̄tj(p) +O(dt),

where O(dt) denotes a form whose pointwise norm is dominated by a constant multiple
of dt, the Hausdorff distance between M and M t. More generally, when dt is sufficiently
small, we have

(3.28) T t(ω̄J) = ω̄tJ +O(dt),

where ω̄J = ω̄j1 ∧ · · · ∧ ω̄jq .

We are now in position to prove Proposition 3.2. Let u ∈ Λ0,q(M). Using the local
frame defined by (3.20), we write

u =
∑′

J

uJ ω̄J .

Here the summation is taken over strictly increasing q-tuples of integers from {1, . . . , n−1}.
By (3.28), we have

T t(u)(z) =
∑′

J

u(π(z))T t(ω̄J) =
∑′

J

u(π(z))(ω̄tJ +O(dt)),

for z ∈M t ∩ U . Hence

(3.29)
∣∣∣|T t(u)|2(ιt(z))−

∑′

J,K

uJ(z)ūK(z)〈ω̄tJ , ω̄tK〉(ιt(z))
∣∣∣ ≤ Cdt|u(z)|2

for any z ∈M ∩ U . (Throughout this paper, we will use C to denote a positive constant,
independent of u and t, which might be different in different appearances.) Note that

|ρj(z)− ρtj(ιt(z))| ≤ |ρj(z)− ρj(ιt(z))|+ |ρj(ιt(z))− ρtj(ιt(z))| ≤ Cδt

for z ∈M . It follows that for any q-tuples J and K,

(3.30)
∣∣〈ω̄J , ω̄K〉(z)− 〈ω̄tJ , ω̄tK〉(ιt(z))∣∣ ≤ Cδt.

Combining (3.29) and (3.30) with (3.18), we then obtain (3.2). Moreover,∣∣∣‖T tu‖2Mt − ‖u‖2M
∣∣∣ =

∣∣∣ ∈ τM(|T tu|2(ιt(z))| Jac ιt∗z| − |u|2(z)
)
dS
∣∣∣ ≤ Cδt‖u‖2M .

This concludes the proof of Proposition 3.2.
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4. Upper semi-continuity

In this section, we establish an upper semi-continuity property for the variational eigen-
values of the Kohn Laplacian as the underlying boundaries vary in the C2-topology. We
have shown in the previous section that the difference between ‖T t(u)‖2Mt and ‖u‖2M is
under control(see Proposition 3.2). To obtain the desirable estimate for the variational
eigenvalues, we need to show that both differences between ‖∂MtT t(u)‖2Mt and ‖∂Mu‖2M
and between ‖∂∗MtT t(u)‖2Mt and ‖∂∗Mu‖2M are under control. This is how the subelliptic
estimate comes into play. The following lemma is a direct consequence of the subelliptic
estimate and the Sobolev embedding theorem.

Lemma 4.1. Let M be the boundary of a smooth bounded domain in Cn such that a
subelliptic estimate (1.2) holds. Let u be an eigenform of �qb with associated eigenvalue
λ(M). Then for every l ∈ N, there exist positive constant Cl such that

(4.1) ‖u‖Cl ≤ Cl(1 + λ(M))
2(n+l)+1

4ε ‖u‖.

Proof. We provide a proof for completeness. Subelliptic estimate (1.2) implies that there
exists a constant Cs > 0 such that

(4.2) ‖(�b + I)−1u‖s+2ε ≤ Cs‖u‖s.
(See the proof of Theorem 5.4.12 in [FK72].) Starting with s = 0 and repeatedly applying
(4.2) to (�b + I)u = (λ(M) + 1)u, we then have

(4.3) ‖u‖2mε ≤ C(1 + λ(M))m‖u‖, m ∈ N.
The desired estimates (4.1) are then an immediate consequence of the Sobolev embedding
theorem. �

Note that the constant Cl in (4.1) depends only on l, the constant C in (1.2), and the
derivatives of the defining function. We are now in a position to state and prove the main
result in this section:

Theorem 4.2. Let M and M t be boundaries of smooth bounded domains in Cn, n ≥ 3.
Suppose a subelliptic estimate holds on M for the Kohn Laplacian on (0, q)-forms, 1 ≤
q ≤ n− 2. Then there exists a positive constant Ck independent of t such that

(4.4) λqk(M
t) ≤ λqk(M) + Ckδ

t,

provided that δt = ‖ρ− ρt‖C2 is sufficiently small.

We will keep the notations as in the previous section. Let L̄j , 1 ≤ j ≤ n − 1, be the
local frame for T 0,1(M) over a neighborhood U of a point p0 on M defined by (3.19) and
let ω̄α, 1 ≤ α ≤ n, be the (0, 1)-forms defined by (3.20). Note that

(4.5) ∂M ω̄j = τM (∂ω̄j) = τM

(
− ∂ρj ∧ ∂ρ

)
= 0.

Let u =
∑′

J uJ ω̄J ∈ Λ0,q(M ∩ U). We have

(4.6)

∂Mu =
∑′

J

(
∂MuJ ∧ ω̄J + uJ∂M ω̄J

)
=
∑′

J

n−1∑
j=1

(L̄juJ) ω̄j ∧ ω̄J .
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We first compare the norms of ∂MtT t(u) and ∂Mu. From Proposition 3.2 applied to
∂Mu, we have

(4.7)
∣∣‖T t(∂Mu)‖2Mt − ‖∂Mu‖2M

∣∣ ≤ Cδt‖∂Mu‖2M .
It remains to estimate the difference of the norms of ∂MtT t(u) and T t(∂Mu) on M t. We
have the following:

Lemma 4.3. Let u ∈ Dom(Qb). Then

(4.8)
∣∣∂MtT t(u)− T t(∂Mu)

∣∣ ≤ Cδt(|u|+ |∇u|).
Proof. From (4.6), we have

(4.9)

T t(∂Mu)(z) = T t
(∑′

J

n−1∑
j=1

(L̄juJ) ω̄j ∧ ω̄J
)

(z)

=
∑′

J

n−1∑
j=1

(
L̄juJ

)
(π(z))

(
ω̄tj ∧ ω̄tJ +O(dt)

)
,

for z ∈M t ∩ U . It follows from (3.26) and (3.21)

(4.10)

T t(ω̄j) =
n∑

α=1

∂π̄j
∂z̄α

ω̄tα −
n∑

α=1

(ρjρᾱ ◦ π)
n∑
β=1

∂π̄α
∂z̄β

ω̄tβ

=

n−1∑
k=1

gjk(z)ω̄
t
k,

where

gjk(z) =
∂π̄j
∂z̄k
− ∂π̄j
∂z̄n

(ρtn̄)−1ρtk̄ −
n∑

α=1

(ρjρᾱ ◦ π)
(∂π̄α
∂z̄k
− ∂π̄α
∂z̄n

(ρtn̄)−1ρtk̄

)
.

Hence

(4.11) ∂MtT t(ω̄j) =

n−1∑
l,k=1

L̄tlgjk(z) ω̄
t
l ∧ ω̄tk.

Let p ∈ M t and p0 = π(p) ∈ M . After a unitary transformation, we assume as before
that p0 is the origin and the negative Im zn-axis is the outward normal direction at p0. It
follows from Lemma 3.3 that

Ltlgjk(p) = O(δt).

To see this, we note that by Lemma 3.3, the following terms

ρtk̄(p), ρj(p0),
∂π̄j
∂z̄n

(p),
∂π̄n
∂z̄k

(p), and
∂2π̄j
∂z̄l∂z̄k

(p), 1 ≤ j, k, l ≤ n− 1,

are all dominated by O(δt). Hence

(4.12) ∂MtT t(ω̄j)(p) = O(δt),
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which implies that

(4.13)

∂MtT t(u)(z) = ∂Mt

∑′

J

uJ(π(z))T t(ωJ)

=
∑′

J

n−1∑
j=1

L̄tj
(
uJ(π(z))

)(
ω̄tj ∧ ω̄tJ +O(δt)

)
+
∑′

J

uJ(π(z))O(δt)

on z ∈M t ∩ U . Combining (4.9) with (4.13), we then obtain (4.8). �

In comparing the norms of ∂
∗
MtT t(u) and ∂

∗
Mu, we likewise have

Lemma 4.4. Let u ∈ Dom(Qqb). Then

(4.14)
∣∣∂∗MtT t(u)− T t(∂∗Mu)

∣∣ ≤ Cδt(|u|+ |∇u|).
Proof. Let v =

∑′
|K|=q−1 vK ω̄K be a smooth (0, q − 1)-form, compactly supported on

M ∩ U . We have

(4.15) (u, ∂Mv)M =
∑′

J,K

n−1∑
j=1

∫
M
uJ · L̄jvK · 〈ω̄J , ω̄j ∧ ω̄K〉dS.

Note that

〈ω̄J , ω̄j ∧ ω̄K〉 = δJjK +R1(ρ),

where

R1(ρ) = P1(ρj , ρk̄)

is a polynomial of first order partial derivative of ρ. Applying integration by parts to
(4.15), we obtain

(4.16) ∂
∗
Mu =

∑′

K

n−1∑
j=1

(−Lj +R2(ρ))ujK ω̄K ,

where R2(ρ) is a rational function where both the numerator and denominator are com-
posed of up to second-order partial derivatives of ρ.

Likewise,

〈ω̄tJ , ω̄tj ∧ ω̄tK〉 = δJjK +R1(ρt).

Moreover, for f ∈ E0,q(M t ∩ U), we have

∂
∗
Mtf =

∑′

K

n−1∑
j=1

(−Ltj +R2(ρt))fjK ω̄
t
K .

Note that Rk(ρ
t), k = 1, 2, can be obtained by replacing the derivatives of ρ in Rk(ρ) by

the corresponding derivatives of ρt. Hence

‖Rk(ρ)−Rk(ρt)‖ . δt, k = 1, 2.

From (3.28) and (4.16), we see that

(4.17) T t(∂
∗
Mu)(z) =

∑′

K

n−1∑
j=1

[((
− Lj +R2(ρ)

)
ujK

)
(π(z))

](
ω̄tK +O(δt)

)
.
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It follows from (3.26) and Lemma 3.3 that

∂
∗
MtT t(ω̄j) = −

n−1∑
j,k=1

Ltk

(∂π̄j
∂z̄k

+
∂π̄j
∂z̄n

ρt
k̄

ρtn̄
−

n∑
α=1

(ρjρᾱ ◦ π)
(∂π̄α
∂z̄k

+
∂π̄α
∂z̄n

ρt
k̄

ρtn̄

))
= O(δt).(4.18)

Therefore,

(4.19) ∂
∗
MtT t(u)(z) =

∑′

K

n−1∑
j=1

(
− Ltj +R2(ρt)

)
(ujK(π(z)))(1 +O(δt)) ω̄tK

for z ∈M t ∩ U . Hence we have (4.14). �

Theorem 4.2 is then a consequence of Lemmas 2.1, 4.3, and 4.4. We sketch the proof as
follows. Let Xk be the linear span of the normalized eigenforms uj , 1 ≤ j ≤ k, associated
with the first k eigenvalues λqj(M) for the Kohn Laplacian for (0, q)-forms on M . It then
follows from Lemmas 4.1 that for any u ∈ Xk,

‖u‖C1 ≤ Ck‖u‖.

From Lemmas 4.3 and 4.4, we have∣∣QM (u, u)−QMt(T tu, T tu)
∣∣ ≤ Ckδt‖u‖2.

Theorem 4.2 then follows from Lemma 2.1.

5. Lower semi-continuity

The proof of lower semi-continuity of the eigenvalues is similar. We provide detail for
the reader’s convenience.

Theorem 5.1. Let M be the boundary of a smooth pseudoconvex domain in Cn with
normalized defining functions ρ. Let M t be a family of boundaries of smooth pseudoconvex
domains that satisfies the uniform subelliptic estimate. Let 1 ≤ q ≤ n − 2 and k ∈ N.
Then there exists a constant Ck which is independent of t, such that

(5.1) λqk(M
t) ≥ λqk(M)− Ckδt,

provided δt = ‖ρ− ρt‖C2 is sufficiently small.

Proof. The proof is similar in some respects to Theorem 4.2. The difference here is we use
Lemma 4.1 to establish estimates that are uniform with regard to t.

We define T̂ t : Dom(Qtb)→ Dom(Qb) by

T̂ t = τM ◦ P 0,q ◦ (ιt)∗.

For ut ∈ Dom(Qtb), note that

(5.2)
‖T̂ t(ut)‖2M − ‖ut‖2Mt =∈ τM 〈T̂ t(ut), T̂ t(ut)〉dS− ∈ τMt〈ut, ut〉dSt

=∈ τM
(∣∣T̂ t(ut)∣∣2(z)− |ut|2(ιt(z))|Jac ιt∗z|

)
dS.
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As in the proof of (3.3), it is sufficient to estimate
∣∣T̂ t(ut)∣∣2(z)−|ut|2(ιt(z))|Jac ιt∗z| point-

wise. We prove the case q = 1, and the general case follows from the same argument. Let
z ∈M t ∩ U , write ut(z) =

∑n−1
j=1 u

t
j(z)ω̄j(z). From (3.24) and (3.27), we have

(5.3) T̂ t(ut)(z) =

n−1∑
j=1

utj ◦ ιt(z)
(
ω̄j(z) +O(δt)

)
and

(5.4) |ut|2(ιt(z)) =
n−1∑
j,k=1

〈utj ◦ ιt, utk ◦ ιt〉(δjk − (ρtjρ
t
k̄) ◦ ι

t +O(δt)
)
.

From Lemma 3.3, we see that

(5.5)

∣∣T̂ t(ut)∣∣2(z)− |ut|2(ιt(z))|Jac ιt∗z|

=

n−1∑
j,k=1

〈utj ◦ ιt, utk ◦ ιt〉
(
ρjρk̄ − (ρtjρ

t
k̄) ◦ ι

t
)

+O(δt)|ut ◦ ιt|2

on z ∈M ∩ U . Hence we obtain

(5.6)
∣∣‖T̂ t(ut)‖2M − ‖ut‖2Mt

∣∣ . δt‖ut‖2.
We now assume that ut is the normalized eigenform of �tb associated with eigenvalue λt. As

in the proof of Theorem 4.2, it suffices to prove estimates ‖∂M T̂ t(ut)− T̂ t(∂Mtut)‖M and

‖∂∗M T̂ t(ut)− T̂ t(∂
∗
Mtut)‖M that are uniform with respect to t. Suppose u ∈ D0,q(U ∩M)

and write u =
∑′

J uJ ω̄J . It is not difficult to obtain that

(5.7) T̂ t(∂Mtut) =
∑′

J

n−1∑
j=1

(
L̄tju

t
J ◦ ιt

)
(ω̄j ∧ ω̄J +O(δt))

and

(5.8) ∂M T̂
t(ut) =

∑′

J

n−1∑
j=1

L̄j(u
t
J ◦ ιt)ω̄j ∧ (ω̄J +O(δt)) +

∑′

J

(utJ ◦ ιt)O(δt).

Applying Lemma 4.1, we get
(5.9)

‖∂M T̂ t(ut)− T̂ t(∂Mtut)‖2M =
m∑
l=1

∈ τMψ2
l

∣∣∣∑′

J

n−1∑
j=1

(
L̄j(u

t
J ◦ ιt)− L̄tjutJ ◦ ιt

)
ω̄lj ∧ ω̄lJ

+
∑′

J

n−1∑
j=1

(
L̄j(u

t
J ◦ ιt)− L̄tjutJ ◦ ιt + utJ ◦ ιt

)
O(δt)

∣∣∣2dS
≤ C(δt‖ut‖C1)2 ≤ C(δt(1 + λt)

n+2
2ε ‖ut‖)2,

where {ψl}ml=1 denotes a partition of unity and here constant C is independent of t. The

estimate ‖∂∗M T̂ t(ut)− T̂ t(∂Mtut)‖M . δt can be obtained similarly. It follows that

(5.10) |Qtb(ut, ut)−Qb(T̂ t(ut), T̂ t(ut))| ≤ Cδt.
The desired inequality (5.1) then follows from Lemma 2.1 and the subsequent remark.

�
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6. Bottom and Top degree cases

In this section, we prove Theorem 1.1, Parts (2) and (3). We first establish stability of
eigenvalues for bottom (0, 0)-degree and top (0, n− 1)-degree forms.

Write λ0
k(M) as the kth-positive eigenvalue of �0

b . Since a subelliptic estimate for (0, 1)-

form holds on M , ∂
∗
M has close range in L2

(0,0)(M). Hence N (∂M )⊥ = R (∂
∗
M ). Therefore

(6.1)

λ0
k(M) = inf

L⊂Dom(∂M )∩N (∂M )⊥
dimL=k

sup
u∈L\{0}

‖∂Mu‖2

‖u‖2

= inf
L⊂R (∂

∗
M )

dimL=k

sup
u∈L\{0}

‖∂Mu‖2

‖u‖2

= inf
K⊂Dom(∂

∗
M )∩N (∂

∗
M )⊥

dimK=k

sup
f∈K\{0}

‖∂M∂
∗
Mf‖2

‖∂∗Mf‖2
.

A similar identity also holds for M t.
Recall that

(6.2) T t = τMt ◦ P 0,1|Mt ◦ π∗ : Λ0,1(M)→ Λ0,1(M t).

We now use the same argument as in the cases 1 ≤ q ≤ n− 2 to demonstrate that λ0
k(M

t)

satisfies upper-semicontinity estimates. Letting u = ∂
∗
Mf in (3.3) and u = f in (4.14), we

have

(6.3)
∣∣‖∂∗Mt

T t(f)‖2Mt − ‖∂
∗
Mf‖2M

∣∣ ≤ Cδt‖∂∗Mf‖C1 .

We claim that

(6.4)
∣∣‖∂Mt∂

∗
Mt
T t(f)‖2Mt − ‖∂M∂

∗
Mf‖2M

∣∣ ≤ Cδt‖∂∗Mf‖2C2

With u = ∂
∗
Mf in (4.8), we obtain the following pointwise estimate

(6.5)
∣∣∂MtT t(∂

∗
Mf)− T t(∂M∂

∗
Mf)

∣∣ ≤ Cδt(|∂∗Mf |+ |∇∂∗Mf |)
on Mt. Substituting u = ∂M∂

∗
Mf into (3.3), we get

(6.6)
∣∣‖T t(∂M∂∗Mf)‖2Mt − ‖∂M∂

∗
Mf‖2M

∣∣ ≤ Cδt‖∂M∂∗Mf‖2M ,
which gives

(6.7)
∣∣‖∂MtT t(∂

∗
Mf)‖2Mt − ‖∂M∂

∗
Mf‖2M

∣∣ ≤ Cδt‖∂M∂∗Mf‖2M .
In order to prove the claim, it now only remains to be shown that

(6.8)
∣∣∂MtT t(∂

∗
Mf)− ∂Mt∂

∗
Mt
T t(f)

∣∣ ≤ Cδt(|∂∗Mf |+ |∇∂∗Mf |+ |∇2∂
∗
Mf |

)
.

Indeed, this follows directly from (4.17) and (4.19). Since a uniform subelliptic estimate
holds on M t, we have

‖f‖2ε/2 ≤ C‖∂
∗
Mf‖2, f ∈ N (∂

∗
M )⊥

(see the proofs of Theorem 8.4.10 and Theorem 8.4.14 in [CS01]). We then conclude the
proof of the bottom degree case by applying the arguments of Lemma 4.1. The proof for
the top degree case is similar and is left to the reader.
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To prove Theorem 1.1 (3), we just need to apply Kohn’s subelliptic estimate on the
pseudoconvex hypersurface M of finite type in C2 and use the fact that these estimates
are uniform on M t provided ‖ρt − ρ‖C∞(U) → 0.

7. Further Remarks

(1) Our main result assumes that subelliptic estimate (1.2) with constants ε and C
independent of t holds on M t. It is of interest to know whether the subelliptic estimate
remains stable under perturbation of the boundary in the C∞-topology. More precisely,
let M t, −1 ≤ t ≤ 1, be a family of smooth compact pseudoconvex hypersurfaces in Cn.
Assume that the defining function ρt of M t depends smoothly on t. Suppose subelliptic
estimate (1.2) holds on M0. Does it follow that a uniform subelliptic estimate holds on M t

(with possibly different constants ε and C that are independent of t) when t is sufficiently
small? As we note in Section 1, this is the case if M0 is strictly pseudoconvex in Cn
or of finite type in C2. D’Angelo showed that if M0 is of finite 1-type, then M t is also
of finite 1-type with a uniform bound on the type when t is sufficiently small ([Dan82,
Theorem 6.9]). Thus a subelliptic estimate holds on each M t. However, it is not known
to us whether the constants ε and C can be chosen to be both independent of t.

(2) Our method makes no use of the assumption that the defining function ρt of the
hypersurface M t depends smoothly on t. In fact, it is easy to see that the main results can
be reformulated for a sequence of hypersurfaces M tj whose defining functions converge to
that of M in C2-norms.

Acknowledgment. The authors thank Professors Mei-Chi Shaw and Dimitri Zaitsev for
stimulating discussions on relevant subjects. They are also grateful to the referee for the
constructive suggestions which substantially improves the quality of the paper.
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